高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
非均相催化材料及及反应器设计开发
1. 高品质纳米钛白粉的研究及结构化成型纳米二氧化钛由于具有良好的化学稳定性、高比表面积、热稳定性、无毒性等特点,并易于与负载金属间产生SMSI效应,在催化工业中得到了广泛应用,诸如:火电厂尾气脱硝处理、VOCs(挥发性有机化合物)催化燃烧处理、柴油车尾气排放控制等。以火电厂的烟气脱硝SCR催化剂为例,纳米级钛白粉作为催化剂载体,占催化剂粉体的80‒90%,总成本的40‒50%,是SCR脱硝催化剂的重要组成。但是目前全球只有日本和欧洲的少数厂家可以生产高品级纳米钛白粉。在我国,目前应用于催化剂工业的纳米钛白粉尚未完全国产化,这是烟气SCR脱硝催化剂等环保催化剂的价格居高不下的主要原因之一。大多数国内SCR脱硝催化剂是通过引进技术、设备和纳米钛白粉粉体等原料,其后自行压缩制作蜂窝式、板式等催化剂,并没有完全掌握催化剂中所有成分的制作及依据不同燃料尾气进行配比的技术经验和诀窍。总体上说,SCR脱硝催化剂在国内基本还处于“来料加工”的状态(即使是国内市场份额较大的东方凯特瑞、无锡龙源等企业)。我们研究室通过探索钛白粉的物化性质、成型性及催化性能三者之间的关系,尝试从科学角度去构建适用于SCR脱硝催化剂等环保催化剂的纳米钛白粉的制备关键技术。进而在此基础上,制备高品级的纳米钛白粉,包括钨钛,硅钛,钒钛等一系列产品,达到国外同类产品技术水平。同时通过探讨不同因素在蜂窝状脱硝催化剂成型过程中的影响,制备工业级别的蜂窝状催化剂,从而最终改变目前国内烟道气脱硝催化剂尚处于的“来料加工”状态,掌握完全自主的知识产权。在研究中,我们采用改进的水热合成法,在较为温和的条件下(< 100°c的低温、常压下),以偏钛酸为原料出发,制备具有高比表面积和良好耐热稳定性的纳米钛白粉(图-1)。同时在制备钛白粉的过程中,充分考察浆料的ph值、杂质含量、助剂(钨、硅)等的添加、煅烧温度等对最终产品的影响。另一方面,在催化剂成型中,我们对添加剂种类、加入顺序、加入量和操作条件等对催化剂机械性能和活性等的影响进行了彻底的研究。在充分考虑泥团的酸碱,硬度,塑性等多种指标的前提下,采用独自的多段搅拌技术制备了蜂窝状催化剂(图-2)。在纳米钛白粉粉体及成型性研究的同时,我们对其作为载体或催化剂在脱硝、脱臭及光化学催化中的应用也开展了研究,例如电厂、大型锅炉、垃圾焚烧厂、船舶(新型轻质波纹板催化剂)等大型设备的烟气SCR脱硝催化剂、VOCs(挥发性有机化合物)催化燃烧催化剂等,以及小型工厂、自动车、民用等SCR脱硝、VOCs催化燃烧等。图-3为纳米氧化钛在VOCs催化燃烧中的应用,图-4为工业级火电厂脱硝用纳米氧化钛挤出型蜂窝状SCR催化剂,图-5为工业级柴油车尾气脱硝用涂层式蜂窝状催化剂。与商业钛白粉的耐热性对比(900°C 9 h in air)    不同掺杂物质对纳米氧化钛比表面积的影响图-1 高比表面积和良好耐热稳定性的新型纳米钛白粉2. 新型金属整体式催化剂载体(PCT专利WO2005/089939A1,日本专利2011-31162) 催化剂的活性组份、结构化载体和反应器三者集成化的思想,已成为当前催化领域重要的且被逐渐接受的新思维。从宏观尺度出发研制的具有结构化的整体式催化剂,由于糅合了催化剂设计和反应器设计,从而具有传质传热好、床层压降低、紧凑小型、工程放大简单等优点,有利于提高催化反应的活性和选择性等。在大气环保和催化燃烧等气固相反应中已得到广泛应用,在多相反应中也显示了巨大的潜力。但传统的涂层式整体式催化剂,因活性组分涂层与基材物性(堇青石或金属合金)的较大差异,使得涂层的粘附稳定性不高,易剥离的问题尚未得到完善解决。针对传统涂覆法制备的金属基体整体式催化剂(MMC)的活性涂层易剥离的瓶颈,以及近年来发展的非涂覆式MMC的比表面积小、孔道难以调控的缺点,我们利用多孔阳极氧化铝材料(PAA)的金属自生长氧化铝膜与金属基体间具有高度粘附性的特点,在保持其有序孔骨架结构的前提下,通过“阳极氧化-扩孔-水热反应-焙烧”的方法,对其孔道结构和化学特性进行改性修饰,制备一种具有大比表面积的新型非涂覆式MMC。在材料合成过程中,结合阳极氧化和扩孔处理对多孔膜的几何参数的调变,解析水热反应中拟薄水铝石层的形成机制以及由此带来的封孔效应,创新性地利用金属自生长和原位相变技术在MMC上实现大范围尺度可调的规则双孔道结构。在此基础之上,我们通过探索PAA催化剂的构效关系,获得既利于分散和反应又有利于扩散传质的孔道特征,发展了一套面向具体反应可控合成MMC的新方法。改性PAA膜与金属基材间紧密的一体化构造,实现了反应场上热量的快速供给与转移。高度可塑性的金属基材使得催化剂可以具有复杂的立体结构,确保了装置的低压损和小型化(图-6)。采用Al/Fe–Cr–Ni Alloy/Al覆层铝材制备的高温型PAA载体,实现了快速通电加热,从室温到1000°C仅需数秒,大幅提升了系统启动性和响应性(图-7)。另外,开发了金属中间扩散层技术和微小龟裂技术用于改善PAA膜在剧烈机械或热冲击下的韧性和稳定性,在40000次通电加热1000°C – 室温急冷的循环测试中,未发现PAA膜的剥落。在研究PAA载体的同时,对其在环保和新能源领域,尤其是对系统压损、启动性、热应答性/热耦合、轻质化及小型化等具有严格要求的体系中的应用,均开展了长期的研究,例如自动车尾气脱硝处理,VOCs/CO/NH3的催化燃烧,甲烷/甲醇/乙醇/DME/煤油的重整制氢等等。3. 贵金属替代型高效催化燃烧(含尾气污染的催化燃烧治理)目前在工业催化燃烧中,主要以贵金属为活性组分,多使用颗粒状充填反应器或堇青石蜂窝状反应器。主要问题是:① 贵金属催化剂性能优异,但价格昂贵;② 设备较为庞大,能量利用率低和运转费用过高,从而严重限制了向中小型企业的普及应用。贵金属替代催化剂和高效节能的紧凑型反应器的开发成为该领域的主要发展趋势。我们对于有机挥发性气体VOCs、CO及NH3的催化燃烧净化,使用多种类型的催化剂进行了研究。主要包括:传统的粒状负载催化剂、负载型改性PAA整体式催化剂、Bulk型复合金属氧化物催化剂、改性TiO2催化剂、含碳素的非贵金属催化剂等。目前为止,所开发的Bulk型Cu-Co系、Cu-Mn系、Fe-Mn系等催化剂,在芳香族(苯、甲苯、二甲苯)的燃烧上接近贵金属催化剂。在CO、NH3、乙酸乙酯、己烷等的燃烧上达到或超越贵金属催化剂(表-1)。当前,我们在整合PAA改性修饰技术和复合金属氧化物技术的基础之上,正在从事负载非贵金属的PAA催化燃烧催化剂的开发,并把它用于化工供热源及大气污染的燃烧治理(VOC、NH3、CO、HC等)。充分利用金属整体式催化剂在可塑性和传热性上的优异性能,通过合理的催化剂成型及反应器设计,提高放/吸热耦合性,实现高效节能和小型化的目的(诸如采用Multi-tube型、Wall-type型、多层同心圆等反应器设计,在平板状催化剂的两侧分别设置燃烧反应和换热介质)。同时,在结合金属整体式催化剂特性的基础之上,根据具体的用途对反应体系进行合理的工艺设计。例如对于低浓度大风量尾气的处理,采用“浓缩–燃烧”一体化设计,并在反应启动阶段采用通电启动催化反应(图-8)。图-8 大中小型VOCs催化氧化处理系统4. 多功能型重整制氢催化剂的研究 (日本专利2011-31162) 碳氢化合物的重整制氢主要用途为PEFC燃料电池的制氢及H2和CO化工原料的制备。但是由于重整制氢多为强吸热反应,反应体系对吸/放热的耦合有严格要求,另外PEFC制氢的启动性和小型化等也被较多地关注。2004年起,我们启动了多功能重整制氢催化剂的开发(甲烷、DME、甲醇、乙醇、煤油等),为降低催化剂成本,使用低价Ni为主要活性成分(图-9)。为解决镍催化剂中常出现的镍氧化、结焦、烧结等失活问题,在孔道控制的基础之上,通过Nickel Aluminate中间层及痕迹量贵金属添加等技术的开发,制备了具有较高寿命并且可以自活化•自复活的AAO镍催化剂。在与商业催化剂(SÜD–CHEMIE的RUA和FCR-4,新日本石油的RUA-2)的对比测试中,该催化剂表现出更加优异的性能。使用都市煤气13A为原料,3000h静态寿命测试及500回DSS模式测试(Daily startup and shutdown)均取得良好结果(图-10)。基于板式通电加热型PAA催化剂的水蒸气重整制氢的测试结果表明,采用阶段式通电加热,系统启动时间可从传统的外加热式的1h缩短为10min,从而为实现PEFC的快速启动提供了有力的技术保障。多用途是该催化剂的重要特点。除天然气的水蒸气重整之外,在甲醇、乙醇、灯油的水蒸气重整,甲烷直接部分氧化重整,甲烷二氧化碳重整等体系中均取得了良好结果。迄今为止,在非贵金属催化剂中,多功能型重整催化剂尚未见报道。目前的主要工作是:1) 催化剂的进一步改良优化;2) 以流程集成化和强化传热为目的,进行Multi-tube或Wall-type型反应器的设计(重整–燃烧一体化) (图-11);3) 整合非平衡式“CO2吸附–重整”一体化设计,超越CO的SHIFT反应的平衡限制,例如采用CO2吸附技术,或催化膜反应器等;3) 生物质原料(生物质甲醇、乙醇、甲烷等)的重整制氢,及CO2的重整等研究;5. 整体式催化剂的新用途在上述研究的基础之上,我们根植于材料化学工程国家重点实验室和化学工程与技术国家一级重点学科,进行跨专业跨学科的合作,充分发挥整体式催化剂的特点,逐步拓展其在能源和环保等领域中的应用,例如:1) 金属基催化剂的放电电极和催化反应效果的叠加2) 再生式环控生保系统二氧化碳的Sabatier反应3) 加氢、裂解、C1及C2合成4) 水污染治理上的应用5) 传统化工领域的技术革新,例如,在催化精馏中实现流道设计用的塔填料与反应用的催化剂的一体化构造,用以实现装置的小型化、降低床层压降以及解决催化精馏常出现的液泛等问题。
南京工业大学 2021-04-13
产品有限元分析、动态测试与优化设计
信息化和全球化给制造业带来了空前的挑战。企业必须应对快速、严峻和多变的市场竞争,开发具有高速度、高精度和高可靠特性的产品。企业逐渐意识到设计的不可靠、高成本和高风险,缺乏相应的技术手段和测试方案来评估和分析产品设计过程与产品动态特性,企业对产品难以做到“心中有数”。 以有限元为基础的计算机辅助工程(CAE)技术,以及动态测试与信号分析技术,能够为产品开发、运行和维护的各个环节,即从概念设计、虚拟原型、性能确认到监测诊断和运行维护,提供集成解决方案以及快速高效的信息化、数字化开发平台,优化产品设计,提高产品质量与动态特性,降低新产品成本并缩短上市时间, 西安交通大学机械工程学院机械工程及自动化研究所,长期从事有限元、动态分析与故障诊断的研究与应用工作,配备有高性能的计算机和完备的工程CAE软件,并且拥有一系列先进的测试实验设备。先后承担了国家973计划、863计划、自然科学基金重点和面上、国际合作项目的研究工作。课题组多年来致力于高精度新型有限元、动态测试与故障诊断理论与技术研究,获得多项国家级和省部级奖励。提出了适宜奇异性求解和高精度建模的小波有限元有法,取得了原始创新成果,发表多篇国际期刊论文,获得多项国家发明专利,在科学出版社出版《小波有限元理论及其工程应用>专著,在清华大学出版社出版《Ansysworkbench设计、仿真与优化》教材。课题组集研究、开发和服务于一体,其研究成果广泛应用于航空航天、汽车工业、钢铁石化、电子通讯、自动机械、通用机械等行业,如中国航天科工集团、中国船舶工业集团、兵器部202所、江铃汽车、柳工机械、武汉钢铁、济南石化、华为电子、上海紫明、浙江南大、西安科达机器人等和理光公司等制造企业。
西安交通大学 2021-04-11
地铁车辆火灾报警灭火联动控制系统的设计
   火灾报警灭火联动控制系统主要由三部分组成,火灾探测报警系统,联动控制网络系统,以及自动灭火系统,其中火灾探测报警报警系统和联动控制系统以每节车为单位,自动灭火系统以每三节车为一个单元。     当火灾报警系统发现火情后通过节点控制器将火警信号传递给上位机显示界面,司控人员通过视频监视系统确认火情后通过节点控制器启动自动灭火系统,达到对火情的早期发现,有效控制。     系统应用高压细水雾灭火系统,填补了地铁车辆上没有自动灭火装置的空白,司控人员可以在上位机通过RS485网络监视各个车厢的火警状况,当火警发生时,可以自动调用相应视频监控器进行火情确认,还可以一键启动自动灭火系统,达到快速控制火情的作用。应用范围:      应用于地铁列车车辆火灾报警与灭火。
北京交通大学 2021-04-13
特种车辆外形及内外人-机-环境设计(服务)
Ø该项技术主要针对特种车辆进行整体外形设计,内部各舱室的空间及布局设计,显示器和控制器设计,人机操作界面设计,座椅设计,舱室内部的色彩、内饰、材料、照明、通风、噪音等工作环境的设计等。并通过制作的1:1全尺寸木模型,全面、立体、形象地展示出设计方案,成为工程设计厂家样车研制的一个的实验平台,降低了研制成本,缩短了研制周期。后期经过不断优化和深入设计,主要是从管线规整、局部完善、细节设计、色彩规范、界面细化等方面,使特种车辆的人—机—环境系统的整体性能得以提升。
北京理工大学 2021-01-12
室内PM2.5浓度分析和控制策略设计软件
01. 成果简介 呼吸干净的空气是人类的基本需求。世界卫生组织(WHO)公布的“2002年世界卫生报告”现实人们受到的空气污染主要来自室内。现代人平均90%以上的时间在室内度过,暴露时间是室外的6倍以上,室内空气直接影响人们的生命健康和生活质量。每年由于室内空气质量问题导致的白血病、肺结核、肺癌、哮喘及呼吸传染病等疾病的死亡人数超过11.2万人。准确估算室内颗粒物浓度水平对评估颗粒物对人体的健康效应,制定有效的控制手段十分重要。 本软件主要用来模拟评估室内的PM2.5颗粒物浓度水平。软件依据室内颗粒物质量守恒的原理,基于颗粒物源散发特征,建筑特性,以及颗粒物动力学特性,包括沉降以及再悬浮,依据一定的数学计算模型,计算得出稳态情况下室内颗粒物的浓度值。并将结果中颗粒物浓度值与相关标准进行比较。如若超标,软件会通过计算给出建议的净化器最小风量,合理调节设计方案,以期室内的颗粒物浓度达到标准要求,为绿色建筑室内空气预评估方法。 在此基础,可以开发室内装载量预评估软件系统。例如:以建材有机污染物散发量数据为核心基础,在确定用量、建筑设计特性参数等边界条件后,对装修后的室内空气质量进行预评估。根据预评估结果分析各类建材对于不同空气污染物的权重关系,结合成本控制、工程定位、气流组织等多种因素提供针对性的装饰装修优化方案。02. 应用前景 可用于室内各颗粒物浓度分析和控制策略,通过科学地计算评估出各房间颗粒物释放量的可视化管理系统来改善空内设计方案进而优化空气品质。03. 知识产权 成果涉及1项软件著作权。04. 团队介绍 团队负责人现为清华大学建筑学院建筑技术科学系长聘教授、博士生导师,主要从事室内颗粒及其复合污染动力学、建筑通风以及空气洁净技术研究。在包括EHP、Epidemiology和ES&T等在内的国际知名期刊发表SCI论文80余篇,被SCI他引1000余次,其中2篇入选ESI高被引论文。入选教育部新世纪优秀人才支持计划(2007)、清华大学基础研究青年人才计划(2013)等,曾获教育部自然科学二等奖(2013;排名第1)和Building and Environment最佳论文奖(2012)以及清华大学学术新人奖等荣誉,于2016年当选国际室内空气科学院(ISIAQ Academy)Fellow。05. 合作方式 技术许可。06. 联系方式 邮箱: binzhao@tsinghua.edu.cn zhysh@tsinghua.edu.cn
清华大学 2021-04-13
火电企业燃料采购决策支持系统的设计方法
本发明公开了一种火电企业燃料采购决策支持系统的设计方法。包括如下步骤:根据火电企业的实际运行情况和在售燃料的情况选取供煤单位的评价指标,用于对潜在的供煤单位进行评价;利用 AHP 算法计算各个评价指标的权重;利用历史数据计算得到每个潜在的供煤单位的各评价指标值,结合火电企业的锅炉参数,得到每个潜在的供煤单位的各评价指标的得分;对每个潜在的供煤单位的每个评价指标,计算其权重与得分的乘积作为该评价指标的权重得分,利用优劣解距离法计算得到各潜在的供煤单位的评分;根据各潜在的供煤单位的采购限制和评分以及火电
华中科技大学 2021-04-14
无人机空中测碳系统的设计与实现*
成果完成年份:2011年7月 成果简介:本项目的自动驾驶无人机技术就是使用博创公司的开发平台和自行设计的硬软件来构建机器视觉开发平台作为无人机控制平台,实现无人机的自动起飞、驾驶、测量CO2浓度、降落等一系列动作。本项目获得全国博创杯嵌入式设计大赛IAR二等奖 项目来源:自行开发技术领域:地球观测与导航技术等 应用范围:二氧化碳的空中测量与监控 现状特点:国内先进 技术创新:1、创新性地使用无人机自动驾驶技
北京理工大学 2021-04-14
工装设计模块化系统软件开发
开发工装设计模块化系统主要针对黎明公司工装需求量大、传统的设计习惯方法已经不能很好适应公司对产品制造快速反应,工装开发的进度直接影响产品制造的现状,将模块化设计的理念应用到工装设计中,通过工装模板库、智能标准件库、工装设计知识库的构建和相关工具的开发应用,以及典型工装设计流程的总结和对应的设计向导开发,实现工装设计的创新。 工装模块化设计应用系统将基于Teamcenter2007(TC)及UGNX6平台进行开发,相关的NX基础数据均存放在TC中,由TC进行管理,保证开发软件符合TC角
南京航空航天大学 2021-04-14
生态型、保健型新农村的规划设计
一、成果简介 通过营造农田与村镇的道路绿色廊道、水路绿色廊道和防护林廊道,构成农村的绿色网络系统;同时通过农家的绿化美化,提高绿量。在此基础上,力争保护农村传统的物质循环系统与能量循环系统,维持丰富生物多样性的生态体系,确保现代新农村的生态性、便利性与快适性。 多数植物对人们具有保健杀菌的功效。通过在道路、水路、防护林以及农家中种植经过选择的花草树木,不仅可以增加空气中负离子浓度、降低含菌量,而提高空气的质量(不妨称之为“田园浴”),还
中国农业大学 2021-04-14
企业视觉形象识别设计(VI) 及品牌包装、 策划、 推广
成果简介视觉识别设计(VI) 是企业形象识别系统(CI) 的可视化识别,它透过一切可见的视觉符号对个传达企业的经营理念及情报信息。 在企业形象识别系统(CI) 中, 视觉识别设计(VI) 是最外在、 最直接、 最具有传播力和感染力的部分。 VI 设计是将企业标志的基本要素, 以强力方针及管理系统有效地展开, 形成企业固有的视觉形象, 是透过视觉符号的设计统一化来传达精神与经营理念,有效地推广企业及其产品的知名度和形象。成熟程度和所需建设条件本课
安徽工业大学 2021-04-14
首页 上一页 1 2
  • ...
  • 54 55 56
  • ...
  • 737 738 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    63届高博会于5月23日在长春举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1