高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
具有抗菌抗病毒作用的藏药榜嘎提取技术
榜嘎,藏名榜阿嘎保,全草均可入药,历代藏医药书均有记载,有清热解毒利湿的功效。本项目涉及的藏药榜嘎提取物不但能够抑制多种病原细菌,而且可以通过抑制病毒吸附、直接灭活病毒、抑制病毒增殖等多环节发挥明显的抗病毒作用,故而该提取物可以在制备抗菌、抗病毒药物中应用。榜嘎提取物原料来源丰富、价廉、萃取工艺简单,成本低,并可很方便地做成各种剂型。具有广阔的开发与应用前景
兰州大学 2021-04-14
揭示人类抗病毒蛋白MxA的作用过程
对MxA蛋白进行了多种修饰改造,经过不断探索尝试后成功获得了功能基本不受影响的MxA蛋白单体,并利用X射线晶体衍射技术解析了单体MxA晶体结构。此后,高嵩课题组与中科院生物物理所赵永芳教授课题组合作,根据结构巧妙设计了一系列单分子荧光共振能量转移的实验,最终通过这种技术含量极高的生物物理技术在单分子水平上揭示了MxA蛋白在GTP水解过程中实时的构象变化情况。该研究阐明了MxA蛋白在抗病毒作用过程中结构改变的动态过程,有助于全面了解MxA抗病毒的具体分子机制,并对人们了解其他dynamin家族成员的具体作用方式有重要的启发意义。
中山大学 2021-04-13
强效抗新冠病毒候选药物和老药品种研究
2020年3月13日,华东理工大学药学院/上海市新药设计重点实验室李洪林团队和武汉大学病毒学国家重点实验室徐可团队合作,在生物预印本网站bioRxiv上发表题为“Novel and potent inhibitors targeting DHODH, a rate-limiting enzyme in de novo pyrimidine biosynthesis, are broad-spectrum antiviral against RNA viruses including newly emerged coronavirus SARS-CoV-2”的研究成果,报道了一类的抗新冠病毒候选药物和老药品种。     鉴于老药来氟米特和特立氟胺已在临床上广泛用于类风湿性关节炎、狼疮性肾炎、多发硬化症等多种自身免疫性疾病的治疗,与糖皮质激素、羟氯喹、甲氨蝶呤等免疫抑制剂相比,来氟米特的副作用较少,可长期服用,安全可靠;且此类药物作用机制及药效明确,作为临床急用,合作团队已建议武汉大学附属人民医院开展来氟米特在新冠病毒肺炎中度和重症病人中临床试验研究,并已在中国临床试验中心完成注册申请(临床注册号:ChiCTR2000030058)。 该研究受到了国家重点研发计划(2018FYA0900801,2018ZX10101004003001,2016YFA0502304),国家自然科学基金项目(31922004, 81825020,81772202)及国家“重大新药创制”科技重大专项(2018ZX09711002)的资助。
华东理工大学 2021-04-11
病毒与宿主/传播机制/增值/演化研究NMT工作站
“NMT界乔布斯”许越先生推荐创新平台 中关村NMT产业联盟推介成员单位创新产品 “生物安全,人人有责” 推出背景: 在国际竞争白热化,战争形态多样化的今天,生物安全已成为国家安全的重要组成部分,为积极应对这一挑战,2019年10月,生物安全法草案于首次提请十三届全国人大常委会第十四次会议审议。本次新冠肺炎疫情的爆发,让各界更加意识到,生物安全对于确保国家安全、保障社会稳定、人民群众生命安全和身体健康的重要性。 国家安全就是国家竞争,归根结底又是科技实力的竞争!因此,作为中国的高新技术企业,中关村NMT联盟的会员单位,旭月(北京)科技有限公司利用20多年的技术积累,以NMT:非损伤微测技术为底层核心技术,迅速推出了与国家生物安全相关多种检验,监测仪器设备,以及适用于多个学科及领域的研发平台: 《NMT生物安全创新平台》特制系列产品!   应对挑战: 1)简单化:病毒与宿主之间相互作用的过程非常复杂,通过NMT检测宿主生理指标的动态数据,展示病毒入侵宿主内部的过程。 2)宿主细胞原位检测:NMT不仅可以检测单细胞,还可以实现对细胞的原位检测,结果更贴近体内的真实情况。 分类及用途: 1)《病毒与宿主互作研究NMT工作站》(型号:NMT-VHI-100) 基于底层核心NMT技术,以及成熟的技术解决方案,让科研人员可以马上投入相关科研创新工作。   2)《病毒与宿主互作研究NMT工作站》(型号:NMT-VHI-200) 基于底层核心NMT技术,结合自身科研兴趣,以及其它相关技术参数,在我方技术人员协助下形成技术解决方案,让科研人员建立更具独有创新特色的实验平台。   《病毒与宿主互作研究NMT工作站》(型号:NMT-VHI-100) 应对挑战: 1)简单化:病毒与宿主之间相互作用的过程非常复杂,通过NMT检测宿主生理指标的动态数据,展示病毒入侵宿主内部的过程。 2)宿主细胞原位检测:NMT不仅可以检测单细胞,还可以实现对细胞的原位检测,结果更贴近体内的真实情况。 用途: 基于底层核心NMT技术,以及成熟的技术解决方案,让科研人员可以马上投入相关科研创新工作。   参数: 1.基本功能: 1.1针对病毒与宿主互作研究设计 1.2活体、原位、非损伤检测 1.3可检测指标:H+、K+、Na+、Ca2+、Mg2+、Cl-、O2、H2O2 2.性能: 2.1自动化操作 2.2长时间实时和动态监测 2.3无需标记 2.4立体3D流速检测 3.软件: 3.1imFluxes智能软件,可直接检测、输出离子分子的浓度与流速 《病毒与宿主互作研究NMT工作站》(型号:NMT-VHI-200) 应对挑战: 1)简单化:病毒与宿主之间相互作用的过程非常复杂,通过NMT检测宿主生理指标的动态数据,展示病毒入侵宿主内部的过程。 2)宿主细胞原位检测:NMT不仅可以检测单细胞,还可以实现对细胞的原位检测,结果更贴近体内的真实情况。 用途: 基于底层核心NMT技术,结合自身科研兴趣,以及其它相关技术参数,在我方技术人员协助下形成技术解决方案,让科研人员建立更具独有创新特色的实验平台。   参数: 1.基本功能: 1.1针病毒与宿主互作研究和研发设计 1.2活体、原位、非损伤检测 1.3可检测指标:H+、K+、Na+、Ca2+、Mg2+、Cl-、O2、H2O2 1.4可实时监测和记录检测时的环境参数:温度、湿度、大气压、海拔、经纬度 1.5配备新指标拓展功能 2.性能: 2.1自动化操作 2.2长时间实时和动态监测 2.3无需标记 2.4立体3D流速检测 3.软件: 3.1imFluxes智能软件,可直接检测、输出离子分子的浓度与流速,以及检测时的环境参数
旭月(北京)科技有限公司 2021-08-23
细菌/病毒/寄生虫免疫机理研究NMT工作站
“NMT界乔布斯”许越先生推荐创新平台 中关村NMT产业联盟推介成员单位创新产品 “生物安全,人人有责” 推出背景: 在国际竞争白热化,战争形态多样化的今天,生物安全已成为国家安全的重要组成部分,为积极应对这一挑战,2019年10月,生物安全法草案于首次提请十三届全国人大常委会第十四次会议审议。本次新冠肺炎疫情的爆发,让各界更加意识到,生物安全对于确保国家安全、保障社会稳定、人民群众生命安全和身体健康的重要性。 国家安全就是国家竞争,归根结底又是科技实力的竞争!因此,作为中国的高新技术企业,中关村NMT联盟的会员单位,旭月(北京)科技有限公司利用20多年的技术积累,以NMT:非损伤微测技术为底层核心技术,迅速推出了与国家生物安全相关多种检验,监测仪器设备,以及适用于多个学科及领域的研发平台: 《NMT生物安全创新平台》特制系列产品!   应对挑战: 1)活体组织器官水平研究:随着研究的深入,单细胞的生理状态,以及对药物的生理反应,与处于机体组织器官中的细胞的差异,已逐渐成为研究中的瓶颈。NMT不仅可以检测单细胞,还可以实现对细胞的原位检测,以及对活体组织器官的在体检测,很好地弥补了这一研究手段的空白。 2)免疫细胞代谢表型差异:通过对T细胞代谢表型,以及对αCD3/αCD28激活的反应,评价T细胞活化对自身免疫疾病的治疗效果。 分类及用途: 1)《细菌免疫机理研究NMT工作站》(型号:NMT-BIM-100) 基于底层核心NMT技术,以及成熟的技术解决方案,让科研人员可以马上投入相关科研创新工作。   2)《细菌免疫机理研究NMT工作站》(型号:NMT-BIM-200) 基于底层核心NMT技术,结合自身科研兴趣,以及其它相关技术参数,在我方技术人员协助下形成技术解决方案,让科研人员建立更具独有创新特色的实验平台。   《细菌免疫机理研究NMT工作站》(型号:NMT-BIM-100) 应对挑战: 1)活体组织器官水平研究:随着研究的深入,单细胞的生理状态,以及对药物的生理反应,与处于机体组织器官中的细胞的差异,已逐渐成为研究中的瓶颈。NMT不仅可以检测单细胞,还可以实现对细胞的原位检测,以及对活体组织器官的在体检测,很好地弥补了这一研究手段的空白。 2)免疫细胞代谢表型差异:通过对T细胞代谢表型,以及对αCD3/αCD28激活的反应,评价T细胞活化对自身免疫疾病的治疗效果。 用途: 基于底层核心NMT技术,以及成熟的技术解决方案,让科研人员可以马上投入相关科研创新工作。   参数: 1.基本功能: 1.1针对细菌免疫机理研究设计 1.2活体、原位、非损伤检测 1.3可检测指标:H+、K+、Ca2+、Cl-、O2 2.性能: 2.1自动化操作 2.2长时间实时和动态监测 2.3无需标记 2.4立体3D流速检测 3.软件: 3.1imFluxes智能软件,可直接检测、输出离子分子的浓度与流速   《细菌免疫机理研究NMT工作站》(型号:NMT-BIM-200) 应对挑战: 1)活体组织器官水平研究:随着研究的深入,单细胞的生理状态,以及对药物的生理反应,与处于机体组织器官中的细胞的差异,已逐渐成为研究中的瓶颈。NMT不仅可以检测单细胞,还可以实现对细胞的原位检测,以及对活体组织器官的在体检测,很好地弥补了这一研究手段的空白。 2)免疫细胞代谢表型差异:通过对T细胞代谢表型,以及对αCD3/αCD28激活的反应,评价T细胞活化对自身免疫疾病的治疗效果。 用途: 基于底层核心NMT技术,结合自身科研兴趣,以及其它相关技术参数,在我方技术人员协助下形成技术解决方案,让科研人员建立更具独有创新特色的实验平台。   参数: 1.基本功能: 1.1针对细菌免疫机理研究和研发设计 1.2活体、原位、非损伤检测 1.3可检测指标:H+、K+、Ca2+、Cl-、O2 1.4可实时监测和记录检测时的环境参数:温度、湿度、大气压、海拔、经纬度 1.5配备新指标拓展功能 2.性能: 2.1自动化操作 2.2长时间实时和动态监测 2.3无需标记 2.4立体3D流速检测 3.软件: 3.1imFluxes智能软件,可直接检测、输出离子分子的浓度与流速,以及检测时的环境参数
旭月(北京)科技有限公司 2021-08-23
无需抗体的酶辅助化学标记N6-甲基腺嘌呤(m6A)测序技术
随着首个RNA修饰N6-甲基腺嘌呤(m6A)的去修饰酶FTO的发现,RNA表观遗传学/表观转录组学开始兴起并成为表观遗传学新的研究热点。m6A作为首个被发现的可逆RNA修饰,广泛存在于mRNA,依赖修饰酶、去修饰酶和结合蛋白发挥调控功能。已发现m6A具有调控mRNA剪接、出核、稳定性和蛋白翻译等功能,可以参与发育、配子发生、细胞重编程、生物节律、疾病等多种生理和病理过程的功能调控。为了更好地研究m6A生物功能和临床病理研究,开发m6A高通量测序技术一直是研究的热点。 现有m6A测序技术主要依赖于m6A抗体富集技术,包括低分辨率的m6A-seq/MeRIP-seq和联用iCLIP或PAR-CLIP技术的高分辨率m6A测序技术miCLIP 或PA-m6A-seq。抗体存在对特定RNA序列或结构的潜在非特异性结合,为了解决抗体方法的种种问题,研究者们做出了各种尝试,近期开发了两类无需抗体的m6A测序技术,一类为利用对特定甲基化序列(m6ACA)敏感的RNA核酸内切酶MazF辅助的测序方法(m6A-REF-seq or MAZTER-seq),此类方法只能检测16~25%的m6A位点;另一种是在细胞内表达融合m6A-binding domain(YTH)与胞嘧啶脱氨酶(APOBEC1)的融合蛋白实现的m6A测序(DART-seq),但该方法依赖于细胞转染效率且受限于体外样品的使用。 贾桂芳课题组一直致力于开发和利用核酸化学生物学技术研究RNA化学修饰在动植物中的生物功能研究。在本课题中,贾桂芳课题组巧妙地利用m6A的去甲基酶FTO蛋白作为催化剂,将mRNA上化学惰性的m6A转化为高反应活性的中间态产物N6-羟甲基腺嘌呤(hm6A),然后利用二硫苏糖醇(DTT)的巯基与hm6A发生亚胺1,2加成反应,将不稳定的hm6A转化为更稳定的巯基加成产物dm6A。dm6A上的自由巯基可以与甲烷硫代磺酸(methanethiosulfonate,MTSEA)快速反应,实现在mRNA上m6A的位置标记生物素Biotin,最终可被链霉亲和素珠捕获,从而富集含有m6A修饰的RNA片段供后续高通量测序使用。
北京大学 2021-04-11
将高纯度的染料-抗体荧光探针应用于生物组织三维染色成像
开发了一种分子荧光探针IR-E1,它在水溶液中量子产率可以达到0.7%并且在体内可以通过肾脏排泄。虽然该量子产率在相关材料中已经是比较高的,但要达到快速成像并实现更深的穿透深度仍需要更亮的探针材料。  研究了一类新型的高效荧光分子探针的理性设计。荧光分子由电子屏蔽基团(shielding unit)、给体基团(donor)、受体基团(acceptor)组合,形成S-D-A-D-S型分子(图1a)。目标分子IR-FE以3,4-乙烯二氧噻吩(EDOT)为电子给体(D),以烷基链取代芴为电子屏蔽基团(S)。通过理论计算模拟,发现EDOT为电子给体时分子骨架具有更大的扭转角和更加调谐的表面静电电位分布,可有效保护受体基团苯并双噻二唑(BBTD),阻止其与溶剂分子或其它分子发生相互作用(图1b)。同时,烷基链取代芴和分子骨架扭转的共同作用可减弱分子间相互作用而降低聚集荧光淬灭。IR-FE的发射波长在900-1400 nm范围,在甲苯中的量子产率高达31%(图2a),在以聚乙二醇进行水溶性修饰后量子产率可保持在2%(图2b),这是迄今为止报道的在水相中量子产率值最高的水溶性近红外二区有机荧光分子探针。研究发现EDOT是荧光分子在水溶液中保持量子效率的关键因素。
南方科技大学 2021-04-13
抗M3型受体变构肽抗体测定在干燥综合征诊断中的应用
干燥综合征(Sjögren’s Syndrome,SS)是一种以侵及泪腺和唾液腺等外分泌腺为特征的全身性自身免疫疾病。该病最常见的临床表现为眼干、口干,并可累及肺、肾脏、淋巴系统、血管及肝脏等器官。此病无明显的地区分布差异,可发生于任何年龄,以40-60岁,特别是绝经后的女性居多,男女之比为1:9。在我国的患病率为0.77%,在老年人群中的患病率高达4%,全国有近800万患者。 目前在临床上应用的SS特异性自身抗体,如SSA、SSB抗体,存在敏感性低,易漏诊的弊端,不能满足临床需求。本团队经过多年研究发现了可以用于干燥综合征诊断的血清学特异性抗原—AM3RP,根据该抗原的抗原表位合成的变构肽可以特异性的识别干燥综合征患者血清中的特异性抗体—抗AM3RP抗体。抗AM3RP抗体在原发性干燥综合征(pSS)具有很高的敏感性和特异性,其中,IgG型抗AM3RP抗体在pSS患者中的敏感性为84.6%,特异性为92.2%;IgA型抗AM3RP抗体在pSS患者中的敏感性为和特异性分别为46%和87%。基于目前SS在我国患者数量庞大,又缺乏相应的特异性诊断价值高的生物学标志物,本项目临床应用前景广阔。
北京大学 2023-07-10
通过改善缺氧微环境提高 PD-1 抗体疗效的靶向纳米抗癌药物的研发
针对肿瘤缺氧所致PD-1抗体不敏感,本项目利用白蛋白及ROS响应链接子将PD-1抗体与富氧血红蛋白(Hb)及ATO包裹成纳米颗粒。 一、项目进展 创意计划阶段 二、负责人及成员 姓名 学院/所学专业 入学/毕业时间 张琰 第二临床医学院/临床医学 2019.9/2024.6 梁洛绮 第一临床医学院/临床医学 2018.9/2023.6 三、指导教师 姓名 学院/所学专业 职务/职称 研究方向 侯鹏 第一临床医学院 副主任/教授 肿瘤生物学 杨琪 第一临床医学院 副主任/副教授 肿瘤生物学 四、项目简介 目前,尽管晚期肿瘤免疫治疗取得巨大突破,仍有大量患者对PD-1抗体不敏感。主要原因是实体肿瘤灌注不良,缺氧、酸化,抑制免疫。阿托伐醌(ATO)为线粒体Complex III抑制剂,能有效降低组织氧耗改善缺氧,但生物利用率低毒性大,应用受限。针对肿瘤缺氧所致PD-1抗体不敏感,本项目利用白蛋白及ROS响应链接子将PD-1抗体与富氧血红蛋白(Hb)及ATO包裹成纳米颗粒。研究结果证实该颗粒能肿瘤局部富集,链接子遇肿瘤微环境高含量ROS解离释放Hb 、ATO及PD-1抗体,瘤细胞对ATO的利用提高,氧耗降低。此外,Hb氧递送实现多途径改善缺氧,显著提高PD-1抗体疗效,具有潜在医学转化价值。
西安交通大学 2022-08-10
王国俊研究员与合作团队联合发现病毒编码蛋白新机制:病毒基因与人类基因融合产生新型嵌合蛋白
RNA病毒一直给人类健康带来巨大威胁。分节段负链RNA病毒(sNSV)通过自身携带的RNA聚合酶抢夺宿主细胞mRNA的5’端帽子结构,转录为病毒mRNA,合成的病毒mRNA是由宿主基因和病毒基因组成的嵌合mRNA。此过程被称为“Cap-snatching”,是sNSV复制周期中的关键环节。 一直以来,人们认为:病毒mRNA翻译的蛋白只包含病毒基因的开放阅读框(ORF),宿主来源的mRNA序列的作用是其5’端帽子结构可供宿主细胞翻译体系识别,其他宿主源遗传信息没有合成病毒蛋白的功能。 该研究揭示了病毒编码蛋白的新机制。 研究发现,病毒抢夺过来的宿主源mRNA片段,不仅起到5’端帽子结构的作用,而且这些宿主源mRNA片段包括起始密码子(AUG),宿主细胞可以从宿主的AUG开始翻译,编码两类宿主与病毒的嵌合蛋白。若宿主源AUG与原有病毒蛋白ORF在同一读码框中(in-frame),产生的蛋白为 N 端延长的宿主与病毒嵌合蛋白; 若宿主源AUG与原有病毒蛋白ORF不在同一读码框中(off-frame),产生的蛋白为新型的嵌合蛋白(Novel host-virus encoded proteins)。 进一步研究结果发现:流感病毒感染细胞后可以产生上述两类嵌合蛋白,这些嵌合蛋白可以诱导T细胞反应,并且与病毒的毒力相关。该研究提示,这种新的病毒蛋白编码机制可能不仅仅局限于流感病毒,在其他人类病毒、动物病毒和植物病毒中也广泛存在这种宿主与病毒嵌合蛋白的编码机制。 本研究是由美国纽约西奈山伊坎医学院(Icahn School of Medicine at Mount Sinai)牵头,多国科研工作者共同合作完成。
内蒙古大学 2021-02-01
首页 上一页 1 2
  • ...
  • 20 21 22
  • ...
  • 31 32 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    64届高博会于2026年5月在南昌举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1