高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
高危HPV免疫诊断试剂盒开发
HPV (Human Papilloma Virus) 是人乳头瘤病毒的缩写,能引起人体皮肤黏膜的鳞状上皮增殖。表现为寻常疣、生殖器疣等症状。 随着
南京大学 2021-04-14
细胞焦亡抗肿瘤免疫功能的研究
在活体内实现肿瘤选择性的蛋白功能调控,对生命科学研究和临床药物开发都有着非常重要的意义,但目前仍是化学生物学领域一个长期存在的挑战。该研究工作一方面展现了基于三氟化硼脱硅反应的“双靶向激活”策略效率高、生物正交性好的优势,揭示了将探针改造为激活剂(Probing-to-Perturbing)这一设想在活体蛋白激活上的巨大潜力。利用这个新颖的生物正交技术,该研究揭示少部分的肿瘤细胞发生焦亡,就足以有效调节肿瘤免疫微环境,进而激活很强的T细胞介导的抗肿瘤免疫反应,该发现为肿瘤免疫治疗药物研发提供了新的思路,Gasdermin家族蛋白也成为潜在的肿瘤免疫治疗的生物标志物,这类蛋白的激动剂则很有可能成为抗肿瘤药物研发的新方向。
北京大学 2021-04-11
NMT新冠疫苗及免疫机理研究系统
“NMT界乔布斯”许越先生推荐创新平台 中关村NMT产业联盟推介成员单位创新产品 “全球抗疫,人人有责”   推出背景: 中国的疫情目前已得到有效抑制,但全球的疫情形势依旧严峻。在这种情况下,中国尽全力向世界各国分享抗疫的经验和成果,这充分显示出大国的奉献与担当,同时彰显了为人类命运的共同繁荣而奋斗的精神。 但大家也清醒地认识到,与新冠肺炎的科技斗争才刚刚拉开序幕,未来任重道远,尤其是在研究技术及方法的竞争上更是世界各国竞争的焦点! 作为中国的高新技术企业,中关村NMT联盟的会员单位,旭月(北京)科技有限公司充分响应国家对于生物安全的政策。在短时间内,利用20多年的技术积累,为抗击新型冠状病毒肺炎隆重推出: 《NMT新冠疫苗及免疫机理研究系统》系列产品!   应对挑战: 1)有效性:随着研究的深入,单细胞的生理状态,以及对疫苗的生理反应,与处于机体组织器官中的细胞的差异,已逐渐成为研究中的瓶颈。NMT不仅可以检测单细胞,还可以实现对细胞的原位检测,以及对活体组织的在体检测,很好地弥补了这一研究手段的空白。 2)安全性:NMT是用于研究活体材料的生理环境,其所检测的Na+、H+、K+、Cl-等与细胞能量代谢、细胞凋亡、细胞形态维持等生理过程直接相关。 分类及用途: 1)《NMT新冠疫苗及免疫机理研究系统》(型号:NMT-VIM-100) 基于底层核心NMT技术,以及成熟的技术解决方案,让科研人员可以马上投入相关科研创新工作。   2)《NMT新冠疫苗及免疫机理研究系统》(型号:NMT-VIM-200) 基于底层核心NMT技术,结合自身科研兴趣,以及其它相关技术参数,在我方技术人员协助下形成技术解决方案,让科研人员建立更具独有创新特色的实验平台。   《NMT新冠疫苗及免疫机理研究系统》(型号:NMT-VIM-100) 应对挑战: 1)有效性:随着研究的深入,单细胞的生理状态,以及对疫苗的生理反应,与处于机体组织器官中的细胞的差异,已逐渐成为研究中的瓶颈。NMT不仅可以检测单细胞,还可以实现对细胞的原位检测,以及对活体组织的在体检测,很好地弥补了这一研究手段的空白。 2)安全性:NMT是用于研究活体材料的生理环境,其所检测的Na+、H+、K+、Cl-等与细胞能量代谢、细胞凋亡、细胞形态维持等生理过程直接相关。 用途: 基于底层核心NMT技术,以及成熟的技术解决方案,让科研人员可以马上投入相关科研创新工作。   参数 1.基本功能: 1.1针对新冠疫苗及免疫机理研究设计 1.2活体、原位、非损伤检测 1.3可检测指标:H+、K+、Ca2+、Cl-、O2 2.性能: 2.1自动化操作 2.2长时间实时和动态监测 2.3无需标记 2.4立体3D流速检测 3.软件: 3.1imFluxes智能软件,可直接检测、输出离子分子的浓度与流速     《NMT新冠疫苗及免疫机理研究系统》(型号:NMT-VIM-200) 应对挑战: 1)有效性:随着研究的深入,单细胞的生理状态,以及对疫苗的生理反应,与处于机体组织器官中的细胞的差异,已逐渐成为研究中的瓶颈。NMT不仅可以检测单细胞,还可以实现对细胞的原位检测,以及对活体组织的在体检测,很好地弥补了这一研究手段的空白。 2)安全性:NMT是用于研究活体材料的生理环境,其所检测的Na+、H+、K+、Cl-等与细胞能量代谢、细胞凋亡、细胞形态维持等生理过程直接相关。 用途: 基于底层核心NMT技术,结合自身科研兴趣,以及其它相关技术参数,在我方技术人员协助下形成技术解决方案,让科研人员建立更具独有创新特色的实验平台。 参数 1.基本功能: 1.1针对新冠疫苗及免疫机理研究和研发设计 1.2活体、原位、非损伤检测 1.3可检测指标:H+、K+、Ca2+、Cl-、O2 1.4可实时监测和记录检测时的环境参数:温度、湿度、大气压、海拔、经纬度 1.5配备新指标拓展功能 2.性能: 2.1自动化操作 2.2长时间实时和动态监测 2.3无需标记 2.4立体3D流速检测 3.软件: 3.1imFluxes智能软件,可直接检测、输出离子分子的浓度与流速,以及检测时的环境参数
旭月(北京)科技有限公司 2021-08-23
将鬼臼毒素转化为鬼臼酸和鬼臼苦素的方法
研发阶段/n本发明公开了一种将鬼臼毒素转化为鬼臼酸和鬼臼苦素的方法,包括:在微生物铜绿假单胞菌、芽孢杆菌、红串红球菌、梭状芽孢杆菌、北京棒杆菌、枯草杆菌、噬夏孢欧文氏菌或弯曲假单胞菌的发酵过程中加入底物鬼臼毒素溶液,进行生物转化反应,得到含有鬼臼酸和鬼臼苦素的生物转化基质。本发明还公开了一种将鬼臼酸和鬼臼苦素从所得到的生物转化基质中分离出来的方法,包括:将生物转化基质用大孔吸附树脂柱进行初分离,并以凝胶柱层析细分离,分别得到鬼臼苦素和鬼臼酸。本发明利用微生物转化对鬼臼毒素结构进行修饰,得到鬼臼酸和鬼
湖北工业大学 2021-01-12
去甲表鬼臼毒素的生物转化及分离提纯方法
研发阶段/n本发明公开了一种将鬼臼毒素生物转化为4-(2,3,5,6-四甲基吡嗪-1-基)-4′-去甲表鬼臼毒素的方法,包括:(1)、将鬼臼毒素加入到液体发酵培养基中,然后接种腐殖性土壤菌二级液体种子进行生物转化;(2)、将步骤(1)产物经分离纯化后加入到液体发酵培养基中,接种鬼臼类植物内生菌二级液体种子进行生物转化;随后添加川芎嗪继续生物转化,收集转化产物,即得。本发明还公开了从上述产物中分离纯化4-(2,3,5,6-四甲基吡嗪-1-基)-4′-去甲表鬼臼毒素及其含量检测的方法。本发明通过生物转化
湖北工业大学 2021-01-12
4-取代苯胺基表鬼臼毒素衍生物及用途
本发明提供一类4-取代苯胺基表鬼臼毒素衍生物,是指4’-O-去甲基-4-脱氧-4-取代苯胺基表鬼臼毒素衍生物,是利用现有的药物依托泊苷作为先导化合物,通过结构改造,合成一系列具有抗肿瘤活性的化合物,初步的体外筛选和体内抑瘤实验表明,这些化合物具有较好的抗肿瘤活性,其中化合物GL3在提高对肿瘤抑制作用的同时,其毒性也明显降低,可制备具有抗肿瘤活性较高、毒性较低、对多药耐药肿瘤有效的抗肿瘤药物;本发明的结构通式:。
浙江大学 2021-04-13
沈其荣教授团队揭示真菌孢子传播和进化权衡分子机制
南京农业大学资环学院沈其荣教授团队以木霉菌为研究材料,通过生态遗传学方法,解析了一类表面活性小分子蛋白Hydrophobin(HFB)参与真菌分生孢子传播,进而影响其环境适应性与物种分化的分子机制, 真菌进化生物学由于化石证据的缺乏、群体间生活史迥异以及同时具有无性和有性生殖现象等问题而发展相对缓慢;另一方面,也正是因为这些独有的特性,真菌具有高度生态可塑性,因而可作为进化生物学研究的极佳对象。高等丝状真菌通过在分生孢子表面“涂”上一层由表面活性小分子蛋白HFB组成的“疏水涂层”而实现孢子的风媒传播等功能。研究人员针对姐妹种木霉T. harzianum(Th)和T. guizhouense(Tg)的高表达hfb基因(hfb4和hfb10)构建了基因敲除突变体库,并分别对突变体进行了风媒和水媒的传播模拟试验,发现不同菌种有各自偏好的传播方式。研究人员对突变子进行抗逆性、生长和繁殖能力测试,发现HFB4的移除不仅显著影响真菌的生态适应性(Fitness),且同一HFB对真菌适应性的贡献力即便在遗传背景相近的菌株间也差异显著。基于此,研究人员分别对两个种群的hfb4(及hfb10)进行了自然选择压力计算,发现来自Th的hfb4受到强正向选择压力驱使。结合其生理生态习性(图1),研究人员猜测,Tg可能起源于水生环境,其孢子为脱离亲代生境,需要通过风媒传播至别处,且在高空中传播要求其孢子可以耐低温和UV照射,Tg具有上述特征;而Th则更偏向于利用雨水或昆虫进行传播,其确切的传播偏好有待进一步研究。在整个进化历程中,hfb4对菌株生态适应性的净贡献率是物种多个指标或特性进化权衡(compromise)的结果,例如hfb4的存在可提高Tg孢子的风媒传播能力,但却会相应“牺牲”掉一些耐低温特性。 在本研究中,研究人员结合人工智能(AI)技术开发了一套可高通量监测丝状真菌生长和繁殖能力的技术集合——REPAINT。REPAINT技术不仅扩充了真菌环境适应性评价体系的指标内容,使基于纯培养方式的数据采集实现高通量智能化和标准化,而且允许针对不同真菌类群实行定制化调整。
南京农业大学 2021-02-01
食药用真菌产物库构建及在慢性病干预中的应用
真菌属于“创造系数”很高的生物资源,可以产生结构多样、新颖,活性广泛的次生代谢产物,对药物和功能食品的研发都至关重要。抗生素类药物青霉素和先锋霉素、降血脂类药物洛伐他汀,以及免疫抑制剂环孢菌素的发现,都显示出真菌资源在药物研发中的优越性。真菌作为食用、药用或保健品,在我国有悠久的历史。我国真菌资源丰富多样,已报道近1000 种食药用真菌,已探明药效的真菌 400 余种,可用于开发功能食品的真菌也很多。本项目通过独特的真菌混合发酵技术,产生新结构的活性产物几率远高于单独菌种发酵,目前已经构建包含 5000 个样品的真菌代谢产物库,建立了免疫增强、抗炎和降三高模型,高通量筛选发现了多个具有增强调节和抗炎组分,具有很好的慢性病干预应用潜力。
清华大学 2021-04-11
高吸附镉的丝状真菌淡紫拟青霉XLA及毛霉XLC的制备
该成果提供了用于重金属镉污染的水体及土壤环境治理的两种丝状真菌菌剂,其活性成分为淡紫拟青霉XLA及毛霉XLC菌株,具有菌丝发达、生物量大、重金属吸附容量强、易于与液体分离收集更利于稀有重金属的回收等众多优点,并且真菌菌丝通过大规模工业发酵很容易获得,是对土壤或环境镉污染进行生物修复的优秀微生物材料。 土壤的微生物修复技术已经在重金属污染环境的修复过程中得到广泛运用。该技术应用后水体或土地基本恢复正常功能,修复速度快,使用简单方便且效果理想,预计该技术投放市场可产生巨大的经济效益和社会效益。 转化条件:微生物真菌菌剂生产无需大面积厂房,有发酵罐和分装车间即可投入生产。 成果完成时间:2015年7月
华中农业大学 2021-01-12
新型膜表面生物活性材料真菌疏水蛋白产业化及应用
真菌疏水蛋白具有自我装配成膜的性质,因此 (1)疏水蛋白可作为蛋白和细胞固定化的媒介,可用于生物传感器和生物芯片,作为引发层,交联上配体或形成融合蛋白,能使特定分子固定化到特定表面。 (2)它能改变表面的属性,保护表面。可用于提高医学器官移植物生物相容性和防止微生物细胞粘附;可应用于医药行业中烧伤、创伤的创面保护,为临床病人创面保护和恢复提供一种安全无毒、操作简便、高效低耗的新手段。 (3)作为一种生物表面活性剂,疏水蛋白还可以用于促进土壤中的污染物的降解和应用在石油泄漏后回收石油的过程中。 (4)疏水蛋白具有表面活性,可用于食品对抗相变能力并形成稳定泡沫,使其在密封食品生产上发挥重要作用; (5)也可用于日用化妆品生产中,因疏水蛋白可以作为洗洁产品的成分,根据其疏水、亲水两相间的转变,可通过自我装配而将面部的油脂等疏水的成分包裹起来,再用水清洗将其除去,也可以作为保护秀发的天然膜,使发部维持清洁并保持一定水分;将它运用到面部的美容护理,由于它的特性,能使皮肤表面形成一层天然生物活性保护膜,起到皮肤保湿、免受外界空气中污浊物的侵害,从而达到护肤美容之功效。 (6)疏水蛋白直接包裹药物以改变药物溶解性并实现控、缓释。通过真菌疏水蛋白与难溶于水的药物混合,可以达到良好的分散效果,并延长了两种药物的药效持续时间。 (7)真菌疏水蛋白与其他的功能性蛋白或小肽组成融合蛋白,同时发挥疏水蛋白的稳定吸附材料表面的特性和功能性蛋白或小肽的特异性功能,如在组织工程、抗炎抗菌材料等。 项目特色: 纯天然生物制品,无毒害,无污染。耐酸碱,抗相变能力强。自我装配形成有活性的蛋白膜。具有良好的热稳定性和透气不透水性。由于它的特性,使得它具有:(1)自动成膜,无需贴敷,使用便利;(2)透气性优良;(3)纯天然无化学添加成分,瑞氏木霉已被证明是安全的菌种;(4)组织相容性好,避免了严重的排异反应;(5)耐高温(100 摄氏度仍保持活性),易于消毒;(6)稳定不降解,便于产品的长期保存;(7)用表面活性剂就可以很容易地清洗(8)延展性好,1 毫克的疏水蛋白在液面就可以展开 1 平方米的薄膜(9)透明,可直接透过成膜观察(10)性价比高。 市场应用前景: 目前国际上尚未实现疏水蛋白的工业化生产,其相关应用产品的开发更为滞后。我们在已实现疏水蛋白中试研发的基础上,扩大发酵规模,进行后续产品的开发,我们的技术和工艺现居国际领先地位,无疑会占有宝贵的先机。 疏水蛋白产品将作为新一代膜生物活性材料进入市场,它的出现将会革命性地取代现有化学产品,这无疑给人类的健康带来了很大的益处,消除人类在预防和治疗疾病、食品加工、以及医学检测、食物保鲜方面为健康做出努力的同时给自身带来的潜在危害,而且价格更为低廉。因此,本项目大规模生产疏水蛋白及其应用开发是有非常广阔的市场前景的,并且我们的技术在国际和国内市场处于领先地位。这些产品都将在国际市场上处于最优竞争状态。
南开大学 2021-04-13
首页 上一页 1 2
  • ...
  • 14 15 16
  • ...
  • 786 787 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    64届高博会于2026年5月在南昌举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1