高等教育领域数字化综合服务平台
云上高博会服务平台
高校科技成果转化对接服务平台
大学生创新创业服务平台
登录
|
注册
|
搜索
搜 索
综合
项目
产品
日期筛选:
一周内
一月内
一年内
不限
单层氧化
石墨
烯及其宏观组装材料
首次提出石墨烯纤维的概念,提出液晶湿法纺丝策略实现了石墨烯纤维的连续制备及高性能化,开辟了从石墨制取碳纤维的全新路径 一、项目分类 重大科学前沿创新 二、技术分析 本成果具有创新性、先进性。从高校的原创科学到原创技术,再到工程化推进,且已实现量产的技术成果。 成果第一完成人带领科研与产业两支队伍,面向世界科技前沿、面向经济主战场、面向国家重大需求、面向人民生命健康,在单层氧化石墨烯及其宏观组装材料的产学研协同发展方面开展科学研究、技术转化与产业化攻坚,获得的成果如下: 发现了氧化石墨烯纤维在溶剂作用下精确可逆融合与分裂现象,揭示了二维大分子的独特界面效应,打破纤维越粗越弱的Griffith定律,为未来粗且强的高性能纤维制备提供了新的理论依据,成果发表在Science杂志上;(2)发现氧化石墨烯的层状和手性液晶新相态,为石墨烯宏观有序组装材料提供了理论基石;(3)首次提出石墨烯纤维的概念,提出液晶湿法纺丝策略实现了石墨烯纤维的连续制备及高性能化,开辟了从石墨制取碳纤维的全新路径;(4)建立了较系统的液固相转变组装方法学,制备出“世界最轻固体”石墨烯超轻气凝胶,突破固体表观密度极限;解决了宏观材料高导热和高柔性不能兼顾的难题,获得了高导热超柔性石墨烯导热膜。 发明的新型石墨烯纤维,得到了Nature在线新闻(2011, 78)、Nature 石墨烯增刊(2012, 483, S33)等杂志期刊的高度评价:“石墨烯物理性能优异,但要驾驭这些性能,必须找到能将优异性能纳米级粒子转化为宏观材料的方法。来自中国杭州浙江大学的许震和高超正好实现了这一目标”等。石墨烯纤维打结图与美国奋进号、俄罗斯联盟号飞船等一起入选了Nature 2011年度最具影响力图像,入选理由为:“这一400微米石墨烯结由中国浙江大学许震和高超制备,显示了纳米尺度精巧的结构控制。许和高将氧化石墨烯液晶纺制成米级柔性纤维并转化成石墨烯纱线”。成果第一完成人“因石墨烯纤维的基础研究工作”,获得首届钱宝钧纤维材料青年学者奖。 获得的多维度多功能石墨烯宏观组装材料,得到了Nature(Nature 2013, 494, 404)、(Nature 2013, 497, 448)及Advanced Science News等的亮点评价或撰文评价:“浙江大学高超团队用非模板法获得了导电、弹性并且密度低于空气的固体泡沫材料”,“浙江大学高超教授及同事报道了具有超高导热且超柔性特性的石墨烯材料。这样的设计理念和实验策略能够拓展至其他二维纳米材料中,使得很多大面积多功能的二维材料能够应用到现实世界的柔性器件中,从航空航天到智能手机,不一而足”等。超轻石墨烯气凝胶获得了 “世界最轻固体”吉尼斯世界纪录,入选了“2013中国十大科技进展新闻”。 在Science、Nat. Electron.、Sci. Adv.、Adv. Mater.等国际知名期刊发表学术论文240余篇,连续四年入选科睿唯安全球“高被引科学家”。授权中国发明专利百余件、国际专利8件。承担国家自然基金委重大、重点、杰青项目及军科委、科工局等项目10多项,项目总经费近亿元。
浙江大学
2022-07-22
一种改性
石墨
烯及其制备方法
本发明公开了一种具有良好分散性的改性石墨烯,以及制备这 种改性石墨烯的方法。通过非共价键的作用,在石墨烯表面修饰高分 子材料,使其具有良好的分散性。这种改性石墨烯的具体制备方法为: 在芳香族小分子上接枝咪唑类化合物,通过咪唑引发环氧开环聚合或 与末端带有卤素基团的长链高分子直接反应,得到末端为芳香基团的 长链芳香族化合物,并在分散有氧化石墨烯且具有还原性的溶剂中, 通过一步法在还原氧化石墨烯的同时将其以非共价键的形式
华中科技大学
2021-04-14
石墨
烯的可控制备及结构调控
本成果包括高纯度不同石墨片层大小石墨烯的可控制备及分离技术,石墨烯的立体 组装技术,如大尺寸石墨烯薄膜、石墨烯气凝胶、褶皱团状石墨烯等。
上海理工大学
2021-01-12
一种
石墨
烯快速剥离的方法
本发明提供了一种石墨烯快速剥离的方法;该方法包括S1利用化学气相沉积法在镍片上生长石墨烯;其中生长温度为750℃~1000℃,生长时间为10~30分钟,生长时通入气体为甲烷10~80sccm和氢气5~10sccm并保持生长气压为常压;S2将所述附着有石墨烯的镍片浸泡在氯化铁溶液中,经过电化学腐蚀后获得剥离后的石墨烯。本发明可以在几十秒到几十分钟内把石墨烯无破损地从基底镍片上剥离下来。这为石墨烯的基础研究和应用提供一种快速的新途径。本发明操作简单,可以快速的把石墨烯转移到任何基片上;剥离后的石墨烯无破损和杂质;剥离石墨烯后的镍片可以继续用于石墨烯制备。
华中科技大学
2021-04-14
碳纤维增强碳化硅陶瓷基
复合
材料
碳纤维增强碳化硅陶瓷基复合材料耐腐蚀、耐高温、耐磨损、韧性高,能够广泛用于能源、交通、化工等领域的关键部件,比如摩擦制动材料、耐化学腐蚀叶片等。
东南大学
2025-02-08
高性能低膨胀铝基
复合
材料及构件
卫星在轨运行和返回过程中需经历极端高低温环境,构件尺寸的稳定是保证卫星在轨高精度、返回高安全、任务高可靠的关键。针对卫星搭载的某宽带微波载荷与卫星本体材料之间热膨胀系数不匹配极易导致的载荷在轨及返回过程中载荷接收精度不稳定、信息传输不连续等问题。我校陈骏教授团队以原创的负热膨胀技术研发了具有轻质、热膨胀系数低、力学性能优异、尺寸稳定性好的高性能低膨胀铝基复合材料,并研制了系列关键连接内置件、环件等高性能低膨胀构件,首次将负热膨胀技术应用到我国的卫星上,填补了高性能低膨胀金属构件在工程应用领域的空白。该技术使得某宽带微波载荷与卫星本体之间热膨胀匹配性增强、界面应力大幅度减小,保证了卫星在轨与返回过程中信号高精度传输与接收,助力卫星成功返回。 图1 实践十九号卫星成功返回(图片来源国家航天局) 图2 高性能低膨胀铝基复合材料及构件应用于全球首颗可重复使用返回式技术试验卫星(图片来源央视新闻频道)
北京科技大学
2025-05-21
复合
加热系统
本实用新型公开了一种复合加热系统,用于利用烟道里废气的热量和太阳能对自来水进行联合加热以产生热水,包括:废热回收装置,太阳能集热器和加热仓.因为废热回收装置能够对废热进行回收并利用该废热加热自来水,太阳能集热器能够对太阳能进行收集并利用太阳能加热自来水,所以本复合加热系统能量利用效率高.另外,本实用新型的复合加热系统中,烟道安装热管的部分单独为一个整体,清洗时可以方便卸下,方便清洗.
上海理工大学
2021-05-04
银杏
复合
饮料
本品为银杏(白果)、兰州百合等为原料制作的纯天然饮品,适合普通人群饮用。技术特点:原料丰富易得,制作工艺简单,成本低廉,很适合生产企业产品 开发。主要指标:本品为乳白色液体,有乳汁之天然色泽,闻之有淡雅的百合和银 杏天然之香味,饮之有甜绵爽口之感,很适合普通人群饮用。
兰州大学
2021-04-14
山楂
复合
饮料
本品为山楂等三种原料制作的纯天然饮品,适合普通人群饮用。技术特点:原料丰富易得,制作工艺简单,成本低廉,很适合生产企业产品 开发。主要指标:本品为茶棕色透明液体,闻之有山楂酸、香气味,入口酸甜适口, 兼有谷香味。且后味绵长。
兰州大学
2021-04-14
石墨
烯体系单原子缺陷研究进展发表
石墨烯中电子除了自旋这个内秉自由度,还有子格赝自旋和谷赝自旋自由度。石墨烯中电子的多自由度给石墨烯带来了很多新奇的物理性质。单原子缺陷是材料体系中最简单的缺陷形式,可以作为一种模型体系来帮助了解缺陷对材料性质的影响和调控。物理学系何林教授课题组长期致力于研究石墨烯中的单原子缺陷,发现缺陷可对石墨烯中自旋、子格赝自旋和谷赝自旋相关的电学性质产生深刻影响。例如,他们利用扫描隧道显微镜(STM)首次证实石墨烯中单原子空位缺陷存在局域自旋磁矩,并在原子尺度上实现了对其自旋磁矩调控,实现了三种自旋量子态;观测到石墨烯中单原子缺陷引入的对称性破缺态,并系统地测量了缺陷附近谷极化和谷依赖的自旋极化在实空间的分布情况。 石墨烯中电子的子格赝自旋来自于其六角晶格结构,有A和B两套子格,因此波函数数学形式上类似于自旋。对于电子自旋有很多有意思的可观测物理现象,那么对应石墨烯中的子格赝自旋是否有可观测的物理现象呢?带着这一问题,何林教授课题组开展了深入研究。他们发现石墨烯中的单原子缺陷可以使准粒子在石墨烯手性不同的两个谷之间发生弹性散射,并伴随着子格赝自旋的旋转,在缺陷附近产生一个原子尺度的子格赝自旋涡旋,而赝自旋在涡旋(单原子缺陷)的绕数直接反映了体系的Berry相位(图1)。通常来说,贝利相位的测量需要借助于外加磁场,因为磁场可以驱动准粒子沿闭合的轨迹绝热运动,所以这一的结果提供了一个简单的方法测量不同层石墨烯Berry相位的方法。何林教授课题组利用STM测量单原子缺陷引起的谷间散射形成的电荷密度波振荡,证明电荷密度波振荡在实空间中增加的额外波前条纹数直接反映了子格赝自旋在涡旋的绕数,从而可直接测量不同层石墨烯的Berry相位。最近的工作中,他们对双层石墨烯进行了详细的研究,并将相关结果推广到多层石墨烯体系。进一步他们还研究了相同和相反绕数的子格赝自旋涡旋的量子干涉。上述结果直接证明了子格赝自旋有很多丰富有趣的物理现象亟待深入研究,也为子格赝自旋物理提供了全新的研究思路。
北京师范大学
2021-02-01
首页
上一页
1
2
...
10
11
12
...
122
123
下一页
尾页
热搜推荐:
1
云上高博会企业会员招募
2
64届高博会于2026年5月在南昌举办
3
征集科技创新成果