高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
焦炉烟道气废热利用技术
项目简介在焦炉生产过程中焦炉煤气燃烧后产生的烟气温度多在 170℃以上, 如果直接排放, 不仅浪费能源, 还污染了环境。 针对这一情况, 安徽工业大学开发了“利用高效换热器回收焦炉烟道气热量技术”, 生成表压 0.8MPa 压力的饱和蒸汽, 供其它工序使用或发电, 既可降低综合能耗、 节约能源, 又保护了环境。成熟程度和所需建设条件该技术正在申请发明专利。技术指标烟道气 200-330 度, 产生表压 0.8MPa 压力的饱和蒸汽
安徽工业大学 2021-04-14
焦炉荒煤气显热回收技术
在炼焦过程中产生的大量荒煤气中蕴含着余热,其热量回收具有以下难点: 荒煤气中焦油蒸汽易结焦积碳;荒煤气中 H2S 及水蒸汽易导致腐蚀;焦炉上部装 煤、侧边推焦,空间狭小;炼焦炭化室高温、荒煤气可燃,泄露后果严重;焦炉 全年无休、全生命周期在线管理。本项目提出的上升管换热器具有耐高温,防腐蚀,结构紧凑,抑结焦,高换 热效率,模块化,易安装等优点。
上海理工大学 2021-01-12
进口蓝膜平板集热器
平板太阳能集热器是让阳光透过盖板照射在表面涂有高太阳能吸收率涂层的吸热板上,吸热板吸收太阳能辐射能量后温度升高,将热量传递给集热器内介质,使介质温度升高,作为热载体输出有用能量。
山东龙普太阳能股份有限公司 2022-02-25
全自动综合热分析仪
将热重分析 TG 与差热分析 DTA 或差示扫描量热 DSC 结合为一体,在同一次测量中利用同一样品可同步得到热重与差热信息。综合热分析仪应用于大多数材料领域,包括塑料、橡胶、合成树脂、纤维、涂料、油脂陶瓷、水泥、玻璃、耐火材料、燃料、医药、食品、耐火材料等。炉体自动升降可控、定位准确,提高了测量的重复性。热流式DSC数据采集方式,绘制出能量与温度的曲线。HQT-2、HQT-3、HQT-4可分别在1250度或1550度恒温72小时。温度范围:HQT-1:室温-1150℃、HQT-2:室温-1250℃、HQT-3:室温-1450℃、HQT-4:室温-1550℃。
北京恒久实验设备有限公司 2021-02-01
硅基毫米波集成电路设计
基于CMOS工艺,设计了大量射频、毫米波收发机和频率源芯片; CMOS 90nm 60GHz 接收机芯片,集成片上天线,传输效率优于IBM芯片90%; CMOS 90nm 21dBm 60GHz功率放大器,性能优于Hittite商用GaAs芯片; CMOS 60GHz 移相器芯片,为开发毫米波相控阵芯片奠定良好基础;
电子科技大学 2021-04-10
硅基新一代锂电负极材料制备
项目成果/简介:目前锂离子电池的能量密度已经越来越不能满足其在电动汽车、智能手机和大规模储能方面的应用。锂离子电池的能量密度低主要是因为所采用的正负极材料的比容量较低,尤其是负极材料石墨,其理论比容量为 372 mAh/g。目前研究最多的、最具有商业化前景的负极材料为硅基负极材料,其理论比容量为 4200 mAh/g,是石墨的十倍以上。据招商证券预计,硅基负极材料在 2020 年的市场使用量接近于 5 万吨,销售额接近于 50 亿。 然而硅基材料在充放电过程中较大的体积变化率(>300%)限制了其商业化应用,较大的体积变化导致极片碎裂以及电解液在材料表面持续分解,从而造成其循环性能剧烈下降。另外,硅基材料为半导体,其导电性较差,从而导致硅基负极材料的倍率性能较差。如何解决硅基负极材料这两大缺点是普及硅基材料在锂离子电池应用的关键。 陈永胜教授课题组结合在纳米技术和石墨烯材料领域的专长,经过近 10 几年的研究,采用低成本的原材料、易工业化的工艺技术制备了石墨烯包覆的硅基负极材料,主要技术创新点包括:1)采用独特的、具有自主知识产权的纳米技术将大粒径的硅粉进行纳米化处理,纳米化大大缓解了硅在充放电过程中体积变化的问题,从而从根本上解决了硅基负极材料循环性能差的问题;2)石墨烯包覆则充分发挥了石墨烯导电导热性能好、机械性能优异、电化学性能稳定等特点,改善了材料的锂离子扩散性能和电子导电性,大大提高了功率特性; 14隔绝了硅与电解液的直接接触,抑制副反应造成的电解液分解和材料侵蚀,提高了首次效率,延缓了使用过程中的寿命衰减;进一步减缓了充放电过程中硅的体积变化,维持材料结构的整体稳定性,极大地提升了循环特性。效益分析:陈永胜教授课题组发明的石墨烯包覆硅基负极材料,从制备过程上讲,具有工艺简单、成本低廉、易工业化的特点;从性能上讲,具有比容量高、稳定性好、压实密度大等优点,与高比容量正极组成的锂离子电池的能量密度是当前商业化锂离子电池能量密度的数倍以上。
南开大学 2021-04-11
硅基新一代锂电负极材料制备
目前锂离子电池的能量密度已经越来越不能满足其在电动汽车、智能手机和大规模储能方面的应用。锂离子电池的能量密度低主要是因为所采用的正负极材料的比容量较低,尤其是负极材料石墨,其理论比容量为 372 mAh/g。目前研究最多的、最具有商业化前景的负极材料为硅基负极材料,其理论比容量为 4200 mAh/g,是石墨的十倍以上。据招商证券预计,硅基负极材料在 2020 年的市场使用量接近于 5 万吨,销售额接近于 50 亿。 然而硅基材料在充放电过程中较大的体积变化率(>300%)限制了其商业化应用,较大的体积变化导致极片碎裂以及电解液在材料表面持续分解,从而造成其循环性能剧烈下降。另外,硅基材料为半导体,其导电性较差,从而导致硅基负极材料的倍率性能较差。如何解决硅基负极材料这两大缺点是普及硅基材料在锂离子电池应用的关键。 陈永胜教授课题组结合在纳米技术和石墨烯材料领域的专长,经过近 10 几年的研究,采用低成本的原材料、易工业化的工艺技术制备了石墨烯包覆的硅基负极材料,主要技术创新点包括:1)采用独特的、具有自主知识产权的纳米技术将大粒径的硅粉进行纳米化处理,纳米化大大缓解了硅在充放电过程中体积变化的问题,从而从根本上解决了硅基负极材料循环性能差的问题;2)石墨烯包覆则充分发挥了石墨烯导电导热性能好、机械性能优异、电化学性能稳定等特点,改善了材料的锂离子扩散性能和电子导电性,大大提高了功率特性; 14隔绝了硅与电解液的直接接触,抑制副反应造成的电解液分解和材料侵蚀,提高了首次效率,延缓了使用过程中的寿命衰减;进一步减缓了充放电过程中硅的体积变化,维持材料结构的整体稳定性,极大地提升了循环特性。
南开大学 2021-02-01
三维非硅微纳集成制造技术
随着支配半导体技术数十年的摩尔定律日益接近其发展极限,多种功能器件集成被认为是超越摩尔定律延续集成电路发展进程的重要途径之一,这就需要能够满足多种功能器件高密度集成的制造技术。多元兼容集成制造技术就是为此而开发的,该技术通过在更大范围内优选结构/功能材料组合,开发异质集成制造工艺,大大拓展了功能微器件创新设计和制造的腾挪空间。经过多年探索,目前已形成了涵盖金属、聚合物、陶瓷、复合材料的MEMS异质异构制造技术体系,并在多种类型功能器件研发中发挥了关键作用,初步展现了其基础性支撑作用,相关技术获得2016年度上海市技术发明一等奖。 微系统集成发展趋势 多元兼容集成制造技术  获奖情况 上海市技术发明一等奖2016年团队获奖 国家技术发明二等奖2008年 上海市技术发明一等奖2007年 超薄超快高热流密度微通道散热器 上海交通大学团队在长期研究经验和技术积累基础上,创造性地提出了不同高热导率材料组合构造的复合结构微通道散热器设计方案,并基于多元兼容集成制造技术完成了多种尺寸样品研制,其中,热源面积与常用功率芯片尺度相当的超薄散热器冷却能力达到800W/cm2以上,在保留传统微通道散热器良好系统兼容性和适用性的基础上达到了相当高的散热能力水平,为解决高功率芯片系统超高热流密度散热问题提供了一个深具可行性的解决方案。 高温薄膜温度传感器研究  发动机燃烧室等极端恶劣环境下(高温、强振动、强腐蚀等)的工作参数现场监测对传感器技术是严峻挑战,国内外研究广泛。交大团队基于特种材料微纳集成制造技术的长期积累,在高温绝缘薄膜材料、多层薄膜应力调控、曲面图形化和高温敏感介质等技术上取得了一定突破,成功开发了多种可与现场结构共型的高温薄膜传感器,具有体积小、环境扰动小、响应快、灵敏度高、可分布式安置等优点,该团队已经掌握了温度、应力/应变、热流等多种高温状态参数测量技术,适用温度在800-1300℃之间。 薄膜绝缘电阻随温度的变化及测试结构 高温薄膜温度传感器制造及曲面图形化技术 薄膜温度传感器在发动机不同部位测温需求 无线温度传感器测温系统 高性能转接板 基于转接板的多芯片封装是2.5D高密度集成最具可行性的方案之一。但是传统的硅转接板性价比不高,阻碍了广泛应用。上海交大团队基于非硅微加工技术的长期积累,突破了硅转接板绝缘层完整性和再分布层热隔离的难题,成功研制了漏电流极低的低成本高性能硅转接板。此外,还开发了复合材料非硅转接板,TCV陶瓷转接板,TGV玻璃转接板等各种三维封装基板,实验室能够针对不同类型器件三维高密度封装的具体要求,定制开发不同功能的专用转接板,为多功能、高密度、高功率、低成本封装提供个性化解决方案。 TSV-3D 高密度封装概念图  金属-聚合物-纳米复合材料非硅基转接板实物图片
上海交通大学 2021-05-11
三维非硅微纳集成制造技术
项目成果/简介:随着支配半导体技术数十年的摩尔定律日益接近其发展极限,多种功能器件集成被认为是超越摩尔定律延续集成电路发展进程的重要途径之一,这就需要能够满足多种功能器件高密度集成的制造技术。多元兼容集成制造技术就是为此而开发的,该技术通过在更大范围内优选结构/功能材料组合,开发异质集成制造工艺,大大拓展了功能微器件创新设计和制造的腾挪空间。经过多年探索,目前已形成了涵盖金属、聚合物、陶瓷、复合材料的MEMS异质异构制造技术体系,并在多种类型功能器件研发中发挥了关键作用,初步展现了其基础性支撑作用,相关技术获得2016年度上海市技术发明一等奖。微系统集成发展趋势多元兼容集成制造技术 获奖情况上海市技术发明一等奖2016年团队获奖国家技术发明二等奖2008年上海市技术发明一等奖2007年超薄超快高热流密度微通道散热器上海交通大学团队在长期研究经验和技术积累基础上,创造性地提出了不同高热导率材料组合构造的复合结构微通道散热器设计方案,并基于多元兼容集成制造技术完成了多种尺寸样品研制,其中,热源面积与常用功率芯片尺度相当的超薄散热器冷却能力达到800W/cm2以上,在保留传统微通道散热器良好系统兼容性和适用性的基础上达到了相当高的散热能力水平,为解决高功率芯片系统超高热流密度散热问题提供了一个深具可行性的解决方案。高温薄膜温度传感器研究 发动机燃烧室等极端恶劣环境下(高温、强振动、强腐蚀等)的工作参数现场监测对传感器技术是严峻挑战,国内外研究广泛。交大团队基于特种材料微纳集成制造技术的长期积累,在高温绝缘薄膜材料、多层薄膜应力调控、曲面图形化和高温敏感介质等技术上取得了一定突破,成功开发了多种可与现场结构共型的高温薄膜传感器,具有体积小、环境扰动小、响应快、灵敏度高、可分布式安置等优点,该团队已经掌握了温度、应力/应变、热流等多种高温状态参数测量技术,适用温度在800-1300℃之间。薄膜绝缘电阻随温度的变化及测试结构高温薄膜温度传感器制造及曲面图形化技术薄膜温度传感器在发动机不同部位测温需求无线温度传感器测温系统高性能转接板基于转接板的多芯片封装是2.5D高密度集成最具可行性的方案之一。但是传统的硅转接板性价比不高,阻碍了广泛应用。上海交大团队基于非硅微加工技术的长期积累,突破了硅转接板绝缘层完整性和再分布层热隔离的难题,成功研制了漏电流极低的低成本高性能硅转接板。此外,还开发了复合材料非硅转接板,TCV陶瓷转接板,TGV玻璃转接板等各种三维封装基板,实验室能够针对不同类型器件三维高密度封装的具体要求,定制开发不同功能的专用转接板,为多功能、高密度、高功率、低成本封装提供个性化解决方案。TSV-3D 高密度封装概念图 金属-聚合物-纳米复合材料非硅基转接板实物图片知识产权类型:发明专利 、 软件著作权 、 集成电路布图设计技术先进程度:达到国内领先水平成果获得方式:独立研究获得政府支持情况:国家级
上海交通大学 2021-04-10
高效硅异质结SHJSHJ太阳电池技术
北京工业大学 2021-04-14
首页 上一页 1 2
  • ...
  • 11 12 13
  • ...
  • 55 56 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    63届高博会于5月23日在长春举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1