高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
甲磺酸二氢麦角碱在制备抗流感病毒的药物中的应用
本发明涉及甲磺酸二氢麦角碱在制备抗流感病毒的药物中的应用,属于医药技术领域。本发明提供了甲磺酸二氢麦角碱在制备抗流感病毒的药物中的应用。本发明的甲磺酸二氢麦角碱能够在流感病毒进入宿主细胞后的早期复制阶段发挥作用,可以抑制流感病毒核酸的合成,能够显著改善甲型流感引起的肺部症状,降低肺组织内的病毒滴度,具有良好的细胞安全性、生物安全性和有效性,以及很好的抗病毒应用前景。
兰州大学 2021-01-12
楼宇式吸收式换热站
01. 成果简介 由于节能减排的要求,许多回收工业余热作为热源进行城镇供热的供热改造方案得到了较快的发展和广泛的认同。采用板式换热系统的一次网回水温度高于二次网回水温度,使得整个系统的一次网回水温度较高,难以回收低温的工业余热。同时,一个换热站带多栋建筑的供热模式难以实现分栋独立调节,无法避免冷热分配不均所带来的热量损失。 本成果公开了一种楼宇式吸收式换热站,由吸收式换热器、补水定压装置、二次循环泵以及站内一次网水路和二次网水路组成为一体化换热站,一次网进水进入后分为两个支路,一个支路连接吸收式换热器的热侧进口,另一个支路连接补水定压装置的进水口,吸收式换热器的热侧出口经流量计与换热站一次出水口连接;二次网回水进入后经水处理装置后分为两个支路,一个支路连接吸收式换热器的冷侧进口,另一个支路连接补水定压装置的出水口,吸收式换热器的冷侧出口连接二次循环泵的进口,二次循环泵的出口连接换热站二次出水口。 相比北欧流行的传统楼宇式换热站,改变了最基本的换热设备,将普通楼宇式换热站的板换改为吸收式换热器,从而可以使得一次网回水温度比二次网回水温度要低,温差达到15K到25K,相比我国目前已经在部分集中换热站应用的卧式吸收式换热器,实现了分楼栋的供热,大大减小了换热站占地面积,取消了传统的集中的热力站,从而可以实现分栋楼宇式供热,增加了单栋建筑的调节性能,同时实现了分栋热量计量。 楼宇式小型吸收式换热器示例和优势02. 应用前景 楼宇式吸收式换热站可以代替传统集中热力站,放置于每栋楼前或地下室为单栋楼供热。03. 知识产权 成果涉及1项授权专利。04. 团队介绍 清华大学建筑节能研究中心成立于2005年3月,由中国工程院院士江亿领导,旨在推动我国建筑节能事业的发展及实现。自成立至今已承担和完成了国家重大科研任务14项、省级部委科研任务6项。在所完成的科研成果中,有2项获国家级奖项,7项获省部级科技奖励,申报了25项国家发明专利。共出版教材和专著10余本,发表论文百余篇。05. 合作方式 技术许可。06. 联系方式 邮箱:zhysh@tsinghua.edu.cn
清华大学 2021-04-13
一种胶体NiO纳米晶的制备方法及其产品
本发明公开了胶体NiO纳米晶的制备方法,将羧酸镍、保护配体、醇或胺和有机溶剂混合,惰性气氛下搅拌并抽真空;将反应器中的混合物加热到100~350℃,反应后经冷却、沉淀剂沉淀、提纯处理,得到所述的胶体NiO纳米晶;所述羧酸镍的通式为:(R1-COO)2Ni,所述保护配体的通式为(R2-COO)nM,其中,R1与R2独立地选自H、C2~C30的烃基或芳基,所述Mn+与羧酸根结合形成的羧酸盐的反应活性低于羧酸镍,n为羧酸根数。本发明还公开了所述制备方法得到的纯相胶体NiO纳米晶,具有易于低温溶液工艺成膜、功函数高等优点,有望应用于有机薄膜太阳能电池、有机发光二极管、量子点发光二极管等诸多领域。
浙江大学 2021-04-11
铁基非晶合金磁性材料及其制备方法
本发明公开了一种铁基非晶合金磁性材料及其制备方法。该合金材料的化 学分子式为:(Fe100-aCoa)x-Dyy-Bz-Siw,式中的x,y,z,w为原子百分数:60≤x ≤75,5≤y≤25,20≤z≤25,0≤w≤10,0≤a≤10,且x+y+z+w=100。该合金 的制备过程如下:将工业纯金属原料以及FeB合金按合金配方配料,采用真空 感应熔炼成母合金,然后用单辊甩带法制得非晶薄带。本发明具有较好的玻璃 形成能力,且软磁性能优良。所需的原材料大多为工业纯度,从而降低了成本, 同时制备工艺简单,可广泛应用于结构材料和磁性材料等方面。
浙江大学 2021-04-11
利用晶相共生现象可控合成异质结光催化材料
基于半导体异质结概念,首次通过工艺简单,成本低廉熔融盐法合成一系列钽酸钙基半导体异质结复合材料,发现了两元及多元半导体复合物组分及其含量可通过改变前驱物比例简单调控,证明该异质结复合物相,组分变化与光催化制氢性能有着密切关系,阐明不同钽酸钙晶相界面异质结形成促进光生电荷有效分离机制,极大地提高光催化制氢性能。
上海理工大学 2021-04-10
B/N 掺杂型 Al-Ti-C 系晶种合金
铝合金结晶组织的微细化会显著提高铝材的强韧性、组织均匀性、致密性、 耐蚀性、加工工艺性和表面质量等,并减少偏析和裂纹等诸多铸造缺陷。目前, 国内外通常采用 Al-Ti-B 或 Al-Ti-C 中间合金来细化晶粒,但 Al-Ti-B 中间合金 126 的形核衬底质点 TiB2 本身的直径大小在 0.5-3.0μm,而且往往以较大的聚集团 形式存在,如此大的颗粒团在加入到铝合金中后会带来一系列的副作用。而普 通 Al-Ti-C 中间合金细化效果不稳定,易衰退,难以满足铝制品产品质量的要 求。 Al-Ti-C 中间合金之所以细化效果不稳定和容易衰退,是由于其中的 TiCx 晶体存在较多碳空位,从而使之失稳,且随 TiCx中碳空位数量的增加,Al 原子 在 TiCx 表面的偏聚及有序化受到抑制,由原来的完全共格逐渐转变为不完全共 格。因此,减少 TiCx中的碳空位是提高其结构稳定性和生核效率的关键。 研究表明,无空位的 TiC 是铝的有效生核衬底,在接近凝固点的铝熔体中, Al 原子能够依附于其周围形成一个完全共格的有序区,最终促进 α-Al 生核和铝 晶粒细化。经过长期的研究和探索发现,TiCx 中的碳空位可以被原子半径较小 的 B、N 等原子填充,最终形成掺杂型的 TiCxB1-x和 TiCxN1-x等粒子,从而降低 空位浓度并提高异质生核能力。 B 掺杂型 Al-Ti-C 晶种合金中含有大量直径在 1μm 以下(亚微米)的 TiCxB1-x 晶核衬底粒子,且弥散分布,当将该中间合金以微量(0.15%左右)加 入到待细化的铝及其合金熔体中后,立即释放出大量的亚微米级的掺杂型 TiC 晶核,从而使待细化铝合金的晶粒组织得到显著细化甚至超细化(指晶粒直径 在微米级)。因此,采用掺杂型 Al-Ti-C 晶种合金对铝熔体进行晶粒细化处理 将是铝加工行业又一次重要的技术进步。
山东大学 2021-04-13
一种铝基非晶薄带收卷装置
本实用新型公开了一种铝基非晶薄带收卷装置,包括固定底座,所述支撑操作台顶部的两侧均固定连接有限位机构,所述支撑操作台顶部靠近左侧的位置固定连接有表面除杂装置,所述支撑操作台顶部且位于表面除杂装置的右侧固定连接有表面吹干装置,所述固定底座顶部且位于支撑柱的右侧固定连接有收卷固定架,所述收卷固定架的顶部转动连接有收卷滚轮,本实用新型涉及铝基非晶技术领域。该铝基非晶薄带收卷装置,达到了薄带收卷开始阶段便于固定收卷,保证薄带收卷传输过程中不出现偏移褶皱现象,保证薄带表面的光滑度,不被划伤,从而提高光洁度和磁
安徽建筑大学 2021-01-12
电脉冲对亚微米晶材料结构和性能的影响
电脉冲可以显著改变材料微观结构演化路径和扩展材料微观结构的特征参数范围;为材料加工和新材料的制备提供了新的广阔空间。电脉冲退火快速强化亚微米纯铝,短时间电脉冲退火降低拉错密度且不引起晶粒尺寸增大,液氮下电脉冲处理可以析出致密的纳米析出相,提升材料性能。
上海交通大学 2023-05-09
二维材料硒化铟的非晶化方法
本申请涉及一种二维材料硒化铟的非晶化方法。本申请的非晶化方法包括:S1:提供设置有纳米层状硒化铟样品的电学芯片;S2:对电学芯片施加脉冲电压,使硒化铟发生非晶化。本申请通过施加脉冲电压来诱导非晶化,具有快速、精确、节能等优势,适用于高性能电子和光电器件的制造。
兰州大学 2021-01-12
寒旱地区被动式生态户厕系统
该方案针对寒旱区户厕用水不便、冬季上冻、清掏成本高等问题,提出了一种创新解决方案。通过太阳能加热技术与柔性材料结合,有效减缓冬季上冻问题,同时提高粪便堆肥发酵效率,确保极寒天气下的正常使用。方案优势如下: 人性化设计:粪便无害化处理减少蚊蝇滋生和异味,提升农村人居环境。温感座圈、扶手、置物架及太阳能照明等设施,提高冬季如厕舒适度和老年人如厕安全性。 环境友好:便器无需用水,粪尿经无害化处理后可直接还田利用,降低环境污染风险和碳排放。 经济可持续:相比同类设备,施工和使用成本显著降低。高效防冻措施减少施工复杂度,太阳能加热和好氧堆肥技术降低水电支出,减量化处理减少清掏频率,便于农民自行还田利用,进一步降低维护成本。 获得UNICEF(联合国儿童基金会) 2024imaGen Ventures全球挑战赛,最终十佳项目(中国唯一团队),获得国际可持续专家一致好评,5月份正式发布。
清华大学 2025-05-16
首页 上一页 1 2
  • ...
  • 22 23 24
  • ...
  • 229 230 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    64届高博会于2026年5月在南昌举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1