高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
一种高磁导率低损耗金属软磁复合材料及其制备方法
本发明公开了一种高磁导率低损耗的金属软磁复合材料及其制备方法。该软磁复合材料的组成以原子比表示满足下式:Fe100-x-y-zSixPyMz,其中M选自Cr、V、Al、Mn中的一种或多种,下标x、y、z表示相应合金元素的原子百分比,满足以下条件:2≤x≤15,0≤y≤5,0<z≤5。所制得的金属软磁复合材料具有高磁导率、低损耗,且工艺简单,利于成型,并具有一定的成本优势。
浙江大学 2021-04-11
一种溶体磁纺丝装置及使用该装置制备微纳米纤维的方法
该发明公开了一种熔体磁纺丝装置及利用该装置制备微纳米纤维的方法,该装置包括可控制给料速率可加热的给料装置,纺丝喷头,喷头驱动机构和纺丝接收装置,接收装置为水平圆盘,与无刷电机联动,表面有多个竖直支柱,一个为永磁铁。该设备以磁场力代替电场力,整个过程无需高压电作用,有效降低生产成本和安全隐患,同时可批量连续生产微纳米纤维,且制得的纤维排布有序,产量高适合大规模生产,所得纤维有很好的应用前景
青岛大学 2021-04-13
无尾家电金属异物检测与磁耦合谐振式无线电能传输系统
无尾家电金属异物检测: 当无线电能传输系统能量交换区中混入金属时,由于涡流效应金属温度会 急剧升高,进而产生严重的安全事故,因此对混入能量传输区域金属的检测需 亟待解决。本项目组经过多年的研究,积累了丰富金属检测经验,提出了基于 混沌理论和改进平衡线圈技术的检测方法。基于该技术,2013-2014年项目组与 海尔公司合作开发了“无尾家电金属异物检测”系统,成功应用于700W无尾搅拌 器系统中,实验证明系统具有很高的灵敏度和抗干扰性,可实现金属异物检测 精度小于5mm,确保了家电的安全性。磁耦合谐振式无线电能传输系统: 自从2007年美国麻省理工学院(MIT)的Marin Soljacic教授等人利用磁耦合谐 振技术成功地在2m外点亮一只60W的灯泡,无线电能传输技术(WPT)迅速成为 一个世界范围内的研究热点。磁耦合谐振原理是目前电能传输的最好方式,可 实现大功率、高效率、远距离的电能传输,克服有线供电取电不灵活问题。基 于该原理,本项目组成功开发了样机系统,其最大功率10kW,整体传输效率85% 以上,垂直传输距离达200mm,水平自由度100mm,具备金属异物检测功能。 能量传输平台采用扁平化设计,使该系统占用空间体积更小,可非常方便地应 用于家电无尾传输、汽车无线充电、AVG车、机器人等领域。
山东大学 2021-04-13
"一种含钒无磁 Ti(C,N)基金属陶瓷及其制备方法"
一种含钒无磁 Ti(C,N)基金属陶瓷及其制备方法,属于金属陶瓷 及制备方法。含钒无磁 Ti(C,N)基金属陶瓷包括硬质相和粘结相,原料 为粉末状,其组分重量百分比为:TiC:42.11%~53.48%,TiN:7.91%~ 9.99%,Ni:27.78%~32.82%,Mo:9.30%~15.16%,VC:0.50%~ 1.99%,经混料、湿磨、干燥、模压成型、脱脂、真空烧结制备而成。 其制备方法顺序包括混料、湿磨、干燥、模压成
华中科技大学 2021-04-14
不对称负载下无刷双馈电机独立发电系统励磁控制方法
本发明公开了一种不对称负载下无刷双馈电机独立发电系统励 磁控制方法,该方法是基于正、负序双 dq 坐标系,将无刷双馈电机的 功率绕组 PW 电压分解为正序分量和负序分量,然后分别采用 PW 电 压正序分量控制器和负序分量控制器调节 PW 电压正序和负序分量的 幅值和频率,获得所需的控制绕组 CW 电压正序和负序分量,CW 电 压正、负序分量相加即得最终的 CW 电压给定值,根据该给定值产生 PWM 调制信号,进而驱动逆变器对 CW 进行控制,最终使 PW 电压 正序分量的幅值和频率分别跟踪给定值,P
华中科技大学 2021-04-14
一种三角波激励磁场下的磁纳米温度测量方法
本发明公开了一种三角波激励磁场下的磁纳米温度测量方法,属于纳米测试技术领域。该方法具体为:(1)将磁纳米样品放置于待测对象处;(2)在磁纳米样品所在区域施加三角波激励磁场;(3)检测三角波激励磁场-时间曲线和磁纳米粒子样品的磁化强度-时间曲线;(4)依据三角波激励磁场曲线和磁化强度曲线得到磁纳米粒子磁化曲线即激励磁场-磁化强度曲线,对该曲线采样获得激励磁场 Hi 下磁纳米粒子样品的磁化强度 Mi;(5)以激励磁场 H
华中科技大学 2021-04-14
一种基于回流焊的光纤光栅磁传感器的制备方法
本发明公开了一种基于回流焊的光纤光栅磁传感器的制备方法, 该方法包括以下步骤:1)选取长方体形状的硅片并进行超声清洗;2) 用磁控溅射的方法在硅片上溅射一层一定厚度的磁致伸缩薄膜;3)选 取可以在高温条件下使用的光纤光栅并进行超声清洗;4)用磁控溅射 的方法在光纤光栅上溅射一层一定厚度的金属薄膜;5)将镀了金属薄 膜的光纤光栅固定在磁致伸缩薄膜上;6)采用回流焊的方法,将镀了 金属薄膜的光纤光栅焊接在磁致伸缩薄膜上,
华中科技大学 2021-04-14
一种基于磁纳米粒子交流磁化率虚部的成像方法
本发明公开一种磁纳米粒子浓度成像方法,其主要创新在于采用交流磁化率的虚部来进行浓度成像,有效提高磁纳米粒子成像的空间分辨率。对磁纳米粒子施加交流磁场和直流梯度磁场,检测出一次谐波幅值和相位。利用幅值差和相位差或直接利用磁化强度变化量计算出磁纳米粒子交流磁化率的实部和虚部。通过控制直流梯度磁场的零磁场点位置,求解出不同空间位置的磁纳米粒子交流磁化率的实部和虚部,进而利用交流磁化率的虚部实现磁纳米浓度成像。从仿真数
华中科技大学 2021-04-14
一种适用于线型缺陷的磁轭式局部微磁化检测装置
本发明公开了一种适用于线型缺陷的磁轭式局部微磁化检测装 置,该装置包括磁敏感元件部分,磁感应部分及磁轭式局部微磁化部 分,磁敏感元件部分包括磁敏感元件、引线端、磁引导芯和引导芯套 筒,磁引导芯由长短不一的长方体形引导芯构成;磁感应部分由绕制 在引导芯套筒外侧的磁感应线圈和引线端组成;由引导芯套筒支撑固 定的磁轭式局部微磁化部分,包括方形导磁构件、磁轭式双磁铁以及 斜向双导磁构件,该部分将磁场量导入待检测金属体内,达到局部微 磁化的效果,通过与磁引导芯连接的磁敏感元件和引导芯套筒外的磁 感应线圈,传递
华中科技大学 2021-04-14
一种基于磁纳米粒子交流磁化率的温度测量方法
本发明公开了一种基于磁纳米粒子交流磁化率的温度测量方法,所述方法包括如下步骤:(1)确定待测对象区域,并利用通电螺线管对待测区域施加交流激励磁场;(2)利用探测线圈采集交流激励磁场下待测区域的磁感应强度 H1;(3)保持交流激励磁场不变,将磁纳米样品放置于待测对象的待测区域内,利用探测线圈采集施加磁纳米样品之后待测区域的磁感应强度 H2;(4)计算磁纳米粒子的交流磁化率χ的实部χ’和虚部χ”;其中的 A1,A2,α都
华中科技大学 2021-04-14
首页 上一页 1 2
  • ...
  • 50 51 52
  • ...
  • 58 59 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    63届高博会于5月23日在长春举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1