高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
桑辛素抗肿瘤用途
本发明提供了桑辛素或药学上可接受的衍生物在制备抗恶性肿瘤药物中的用途。本发明还提供了桑辛素或其药学上可接受的盐在制备抗脑胶质瘤的药物中的用途。本发明研究发现,桑辛素在体外、体内都表现出了良好的抗恶性肿瘤活性(如胶质瘤),且实验表明,桑辛素可以通过抑制肿瘤生长、诱导肿瘤细胞和肿瘤干细胞横向分化和凋亡的良好效果,且对正常细胞毒副作用小,具有良好的应用前景。
四川大学 2016-10-11
南瓜系列营养素含片
技术原理 :南瓜系列营养素含片研究是以鲜南瓜为原料,经清洗、打 浆、均质、超微细化、复配、滚筒与流化床二次造粒干燥和干法压片等技 术处理而得到南瓜系列营养素含片。 技术特点 :(1)首次采用超微细化技术,克服南瓜中胶、纤维等物质 产生的粗糙口感问题, 使产品口感爽滑、 细腻。利用南瓜中全部营养成分, 包括果胶、纤维等降血糖功能成分,保留了南瓜原有的色、香、味,提高 了保健功能。 (2)首次将采用二次干燥
南昌大学 2021-04-14
丹参素的生物合成技术
成果与项目的背景及主要用途 : 丹参素是一种天然植物多酚酸,是中药丹参的主要水溶性活性成分。丹参及其制剂(如复方丹参滴丸、复方丹参片等)、丹参素的衍生物丹酚酸 B 和丹酚酸注射液已经批准,广泛用于临床治疗心血管疾病。丹参素是丹参及其制剂国家药典规定的质量控制指标。丹参素的药理活性包括具有改善血流、抑制血小板活化和动脉血栓形成,还具有抗癌和抗炎等活性。我们研究还发现,丹参素具有清除活性氧和活性氮的作用,是一种高效的抗氧化剂。丹参素清除羟基自由基和超氧阴离子自由基活性,高于维生素 C。因此在医药、保健品、食品等方面具有很大应用潜力。 目前丹参素主要从药材丹参中提取,然而丹参根中含量低(一般 0.045%),严重制约了丹参素的大规模应用。化学合成丹参素存在着步骤繁琐,立体选择性不高。采用合成生物学技术构建工程微生物,通过发酵方法生产丹参素是一种很好的替代方法。 技术原理与工艺流程简介: 本技术采用合成生物学策略,挖掘大量的天然生物元件,创新组合了功能酶,设计了非天然存在的从葡萄糖到丹参素的生物合成途径,构建丹参素的人工细胞工厂。实现了葡萄糖为原料,发酵生产丹参素。发酵 72 小时,积累丹参素 7 克/升以上,对葡萄糖的摩尔转化率为 0.47,达到国际领先水平。 技术水平及专利与获奖情况: 截止目前,丹参素的生物合成途径一直未见报道,天津大学唯一拥有该技术。 应用前景分析及效益预测: 微生物发酵生产丹参素,得率高,工艺简单,成本低,唯一的拥有该技术,市场竞争力强。 应用领域:医药、食品、保健品等领域。 合作方式及条件:寻求技术转让或新产品合作开发
天津大学 2021-04-11
纤维素高效水解技术
由木质纤维素原料水解并发酵制得的乙醇是一种重要的可再生能源;纤维素水解到一定聚合度所得微晶纤维素可用于食品、医药、皮革及造纸等行业,应用范围广泛。然而现有水解方法消耗大量的化学试剂且水解选择性很低,造成可发酵糖得率和微晶纤维素产率均不高,成为纤维素利用技术进一步发展的瓶颈。本成果开发了一种化学改性的方法改变纤维素的结构,提高纤维素的水解效率。所得水解液可用于燃料乙醇生产,所得固体可用于制备纤维素材料。 关键技术 (1)纤维素水解可发酵糖得率提高。 (2)一步法获得改性纳米纤维素材料。 知识产权及项目获奖情况 (1)授权专利 一种提高纤维素水解效率的方法 ZL201110154930.9 一种提高纤维素水解效率的方法 ZL201210438249.1328 一种提高稻草水解效率的方法 ZL201310468580.2 一种纤维素改性剂的合成方法 ZL201310468666. (2)项目获奖 获得陕西省科学技术二等奖。 项目成熟度 部分工艺已中试。 投资期望及应用情况 成果可在生物质能源及生物质材料领域推广应用。
江南大学 2021-04-13
虾青素微囊粉
外观:深红色粉末 提取来源:雨生红球藻 含量:1~2.5% 检测方式:HPLC 溶解性:溶于水 包装规格:1kg/5kg/25kg 储存条件:请置于阴凉干燥处保存,避免阳光直射 保质期:24个月
青岛藻蓝生物有限公司 2021-09-02
一种磷回收用陶粒及其制备方法
本发明涉及一种磷回收用陶粒及其制备方法,以地铁渣土50~80份、农作物秸秆0~30份、氧化镁15~30份和黏结剂羧基纤维素0~5份为原料制成坯料,经过以下步骤制得:(1)将农作物秸秆粉碎,将上述重量份数的原料进行研磨混合,然后按水固比1:0.3~0.5制成陶粒坯料;(2)将陶粒坯料干燥2~4h,然后在100~200°C下保温25~45min,再在300~500°C下烧结24~60min得到烧结物;(3)将上述烧结物进行冷却即得产品。本发明制备工艺简单,可实际操作性强,烧结温度低,无需养护,所需原料种
安徽建筑大学 2021-01-12
高效无磷洗涤助剂P型沸石的制备
一、项目简介为了保护环境,目前我国许多地方已经禁用或限用三聚磷酸钠作洗衣粉的助洗剂。为此无磷洗涤助剂一直是人们研究开发的热点,P型沸石是含磷洗涤助剂三聚磷酸钠一种优良替代产品,具有和4A沸石同等水平的钙吸附能力以及比它更高的镁吸附能力,因此P型沸石比4A沸石更适合做洗涤助剂。本项目以膨润土为原料,采用碱法活化方法,开辟一条具有自主知识产权的生产P型沸石新工艺,该工艺克服了在目前膨润土酸法深加工方面的不足,具有生产工艺简单、投资少、操作无污染、成本低等特点,产品性能高于4A沸石,有很强的市场竞争能力。本技术已经申报两项国家发明专利。二、产品质量指标沸石P的优点在于:①交换Ca2+速度快;②结合Ca2+的容量高;③具有高吸纳表面活性剂能力和良好的可加工性;④有良好的吸油性,对去油污垢有利;⑤对漂白剂稳定。本技术合成的P型洗涤用沸石综合性能性能 钙离子交换 ( mgCaCO3/g干P型沸石) 粒度 (%) 白度(W=Y) PH 值(1%溶液,25℃) 灼烧失量(800±10℃ ,3h) %≤10μm ≤4μmP型分子筛 320 ≥99 ≥94 95 10.35 16.42三、市场前景现在全国洗衣粉生产能力为230万t/a,普通洗衣粉含三聚磷酸钠约15%,如全部以P沸石代替,我国约需P沸石30万t/a左右。此外P沸石还在催化、水处理等领域有有着广泛的用途,可见我国P沸石生产发展潜力巨大。目前我国P沸石产量和生产能力几乎为零,需要大力推广生产。四、生产设备及投资高温炉(或高压反应釜装置)、水热合成陶瓷反应釜、板框过滤机、晶化反应釜、干燥设备器等。主设备投资约为70万元。五、效益分析1、以膨润土为原料生产1吨P型沸石分子筛,综合成本:1963.8+100+70+200+200=2533.8元/吨2、以高岭土为原料生产1吨P型沸石分子筛,综合成本:1090.8+100+70+200+200=1660.8元/吨六、合作方式面议。
河北工业大学 2021-04-13
低碳生活污水高效脱氮除磷技术
该技术 COD 消耗量节省 40%以上,有效解决了现阶段污水脱氮除磷中碳源不足的问题,可提高脱氮除磷效果,除磷效率接近 100%。该项技术,还可灵活应用到现有的污水处理工艺中,如连续流的 A2/O、或续批式 SBR 工艺等。该技术除了有效提高碳源利用率外,还可降低氧气消耗量 30%,减少污泥产量 50%。此工艺的最大特点是,利用反硝化聚磷菌生物学特性达到“一碳两用”的目的, 有效提高脱氮除磷效率。
扬州大学 2021-04-14
一种催化分解磷石膏的方法
本发明涉及一种催化分解磷石膏的方法。其技术方案是:按磷石膏和炭化稻壳的质量比为(20——1)︰1,将磷石膏和炭化稻壳混合均匀,制得混合料。再将所述的混合料放入管式炉中,在600——900℃条件下进行催化分解反应,反应时间为60——180min,反应得到的二氧化硫气体直接制硫酸,反应得到的固体产物为活性石灰、或为硅酸钙、或为活性石灰和硅酸钙。其中:所述磷石膏的粒度为0.175——0.043mm,磷石膏的CaSO4为70——95wt%;所述炭化稻壳的粒度为0.175——0.043mm,炭化稻壳中:C为10——80wt%,SiO2为19——89wt%。本发明不仅能有效降低反应温度、加快反应速度、减少能耗和降低生产成本,且能实现对固体产物成分的精确控制。 (注:本项目发布于2014年)
武汉科技大学 2021-01-12
一种大量收集西花蓟马卵的方法
本发明公开了一种大量收集西花蓟马卵的方法,包括如下步骤:选用2分隔塑料培养皿,用镊子去掉培养皿底面,使得培养皿两端开口,并留住培养皿中间的横条;取parafilm膜,双手均匀用力,将parafilm膜拉伸直至不能拉伸为止,然后密封在培养皿顶端;在parafilm膜上滴蜂蜜,将50头龄期为6‑10天(产卵高峰期)的西花蓟马雌成虫置于parafilm膜上,将培养皿的另一端用保鲜膜封口,用解剖针扎满孔;在培养皿盖中加入双蒸水,然后将parafilm膜的一端放入盛水的培养皿盖中,让其产卵;24小时后,移走盛有西花蓟马的培养皿,用移液器将培养皿盖中的卵收集到1.5mL的离心管中,即完成卵的收集。本发明操作方便,方法易行,可大量收集到西花蓟马卵。
青岛农业大学 2021-04-13
首页 上一页 1 2
  • ...
  • 7 8 9
  • ...
  • 36 37 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    64届高博会于2026年5月在南昌举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1