高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
一种铁路工程机制砂泵送混凝土组分配制方法
本发明公开了一种铁路工程机制砂泵送混凝土组分配制方法。本发明从最优等效细粒体体积的角度出发,公开了一种新的铁路工程机制砂泵送混凝土配制方法。基于本发明配制的铁路工程机制砂泵送混凝土,无论原材料品种、等级、生产厂家如何变化,本方法以不变应万变,均可以配制出综合性能优良的机制砂泵送混凝土,避免了工程上一旦原材料变化而导致配合比反复试验反复验证的实际问题,弥补了现有配制方法的不足,创造了一种更科学、合理、稳定的铁路工程机制砂泵送混凝土配制技术。
西南交通大学 2018-09-18
苹果等蔷薇科果树自花结实种质发掘、机制研究与应用
一、项目分类 重大科学前沿创新、关键核心技术突破 二、成果简介 蔷薇科果树如苹果、梨、樱桃等主栽品种多表现为自花授粉不结实(自交不亲和性),需配罝授粉树和人工授粉来保证生产。针对我国一些果园存在授粉品种配置不当、人工授粉成本高造成生产成本高、坐果少、偏斜果多,损失巨大的问趣,通过持续攻关,取得如下创新性成果: 1、探究了苹果等蔷薇科果树自花(不)结实内在分子基础。系统揭示了苹果花柱S-RNase 在 ABCF 蛋白辅助下非特异性跨膜转运进入花粉管、突破硫堇蛋白 D1 介导的防御反应、引起微丝骨架解聚、tRNA 氨酰化受阻导致花粉管生长停止的机制;此外,明确花粉膜蛋白基因 HT1 变异导致苹果 ‘中苹1号’ 自花结实的分子机制;发现梨‘闫庄’中 S21-RNase 基因的一个碱基突变导致其蛋白氨基酸变异是造成自花结实的原因;解析了‘拉宾斯’樱桃中 S-RNase 被 SLFL 识别并泛素化降解的分子机制,为打破自交不亲和性,育成自花结实品种奠定理论基础,理论创新国际领先。 2、研发苹果等蔷薇科果树自花结实育种技术。全基因组关联性分析(GWAS)获得苹果‘寒富’ 自花结实性 SNP 高精度分子标记 1个,‘惠’ 自花结实性 SSR 分子标记 1个,建立了自花结实苹果分子快速预选育种体系;研发了花柱 S-RNase 快速提取技术、花粉管微丝标记技术及花粉管核蛋白提取技术,为自花结实分子育种提供了有力的技术支撑。 3、选育、推广苹果蔷薇科果树自花结实性品种。利用自花结实性综合评价技术挖掘白化结实苹果种质 4份、梨2份、樱桃1份;配置杂交组合,选育出自花结实优质苹果‘中苹1号’、‘岳冠’等,在北京、河北、辽宁等地示范推广10万余亩,经济效益每亩增加1000余元,有效推动当地果树产业轻简化生产进程,节本增效成效显著。
中国农业大学 2022-08-15
揭示植物基因表达在染色质水平调控的新机制
利用模式植物拟南芥为研究对象,通过对染色质结合的RNA的纯化及测序分析(CB-RNA-seq),研究团队的工作显示共转录剪接在目前已检测的物种中是普遍模式。同时,植物的共转录剪接存在几个重要的特征:首先, 共转录剪接的效率与特定内含子到基因3’端的距离正相关,与一些激活型的组蛋白修饰(H3K4me3/H3K9ac)负相关,暗示快速的转录起始及延伸不
南方科技大学 2021-04-14
西安交大科研人员发现金属韧脆转变新机制
拟南芥在植物研究领域具有崇高的地位,被科学家誉为“植物中的果蝇”。拟南芥的研究为粮食增产、农作物抗逆、植物保护等领域做出了重要贡献。全世界有近万家实验室正在对拟南芥进行遗传分析、基因克隆和功能基因组等科学研究。
西安交通大学 2021-09-10
混合导通机制鳍型栅场效应晶体管器件
本发明提供了一种混合导通机制鳍型栅场效应晶体管器件,包括鳍型栅场效应晶体管、第二源区与第二漏区;鳍型栅场效应晶体管包括衬底、鳍型沟道区、第一源区及第一漏区;第二源区的高度不低于第一源区与第一漏区之间的衬底的高度;第一源区与第一漏区中掺杂有第一离子;第二源区形成于衬底与第一源区之间,第二漏区形成于衬底与第一漏区之间,第二漏区与第二源区中分别掺杂有第一离子与第二离子。该方案解决了鳍型栅场效应晶体管的底部电流泄漏的问题,且通过增设第二源区和第二漏区,相当于在鳍型栅场效应晶体管的底部并联隧穿场效应晶体管器件结构,可以实现鳍型沟道扩散漂移电流和底部沟道带带隧穿电流混合导通,从而获得更优的超陡开关特性。
复旦大学 2021-01-12
微机制冷量热仪-鹤壁盛华煤质分析仪器
产品详细介绍标准配置: LR-4A量热仪主机、冷却器、联想电脑、打印机、充氧仪、氧弹 适用范围及标准: LR-4A量热仪采用并符GB/T213-2003《煤的发热量测定方法》的要求,该量热仪适用于煤炭、焦炭、石油及水泥黑生料等可燃物质的热值 技术参数:     测温范围:0℃~65℃                             测温分辨率:0.001℃     样品量:0.5g~1.5g                             自动调节内外桶水温     发热量测试精度:优于0.2%(苯甲酸)     电源:AC220V±10%,50Hz     自动定量水,定量误差:≤±1g               功率:200W 主要特点:1.LR-4A量热仪系统运行于WindowsXP及以上系统,界面友好,易学易用。2.LR-4A量热仪采用先进的电子制冷工艺,完全不受环境温度变化的影响,确保仪器内外筒温差符合国标要求。可连续长时间工作。3.LR-4A量热仪自动注水、排水、自动调水温,自动完成测试全过程并打印测试结果 4.LR-4A量热仪可作为单筒量热仪使用,亦可对两套量热弹筒进行异步操作。在进行双筒测控时,两套量热弹筒互不干扰,可随时进行其中一台量热仪的操作 
鹤壁市盛华实验仪器厂 2021-08-23
一种抗大肠杆菌k88ac的单链抗体及其编码基因与应用
本发明涉及基因工程,具体公开了一种抗大肠杆菌k88ac的单链抗体及其编码基因。本发明将抗k88ac抗原的抗体可变区基因,与猪的抗体恒定区通过linker序列连接,形成scFv‑Fc结构。构建CMV启动子调控scFv‑Fc基因表达的重组载体k88‑p CMV5,使其在细胞水平高效表达。通过western和ELISA检测抗体可正常表达;且具有与k88ac抗原的结合能力。本发明成功获得了针对k88ac大肠杆菌的抗体基因,为得到抗腹泻转基因猪群提供了新方法,对于农业发展具有很大的经济效益。
中国农业大学 2021-04-11
来源于象耳豆根结线虫的Mesp1蛋白及其编码基因和应用
本发明公开了一种来源于象耳豆根结线虫的Mesp1蛋白及其编码基因和应用。本发明提供了Mesp1蛋白,是由序列表中序列1或序列3所示的氨基酸序列组成的蛋白质。编码Mesp1蛋白的Mesp1基因也属于本发明的保护范围。本发明还保护Mesp1蛋白的应用,为如下(c1)至(c3)中的至少一种:(c1)调控根结线虫的寄生能力;(c2)调控根结线虫的致病能力;(c3)调控根结线虫的发育。本发明还保护一种培育转基因植物的方法,包括如下步骤:将所述干扰Mesp1基因表达的物质导入出发植物,得到转基因植物;所述转基因植物对根结线虫的抗性高于所述出发植物。本发明对于象耳豆根结线虫致病机理研究以及抗线虫植物制备具有重大价值。
中国农业大学 2021-04-11
一种许氏平鮋免疫增强蛋白HMGB1基因及编码蛋白和应用
本发明涉及分子生物学领域,具体的说是一种许氏平鮋免疫增强蛋白(HMGB1)编码基因及其重组蛋白制备和应用。HMGB?1为序列表SEQ?ID?No.1中的氨基酸序列所示,该蛋白的编码基因为序列表SEQ?ID?No.2中的碱基序列所示。其制备方法:以鳗弧菌刺激的许氏平鮋头肾cDNA为模板,PCR扩增HMGB1编码基因,构建质粒pHMGB1;将pHMGB1转化大肠杆菌BL21Transetta(DE3),对转化子进行诱导表达后,提取和纯化蛋白,即得重组HMGB1蛋白。所述重组HMGB1蛋白可结合双链DNA,并可显著提高许氏平鮋头肾巨噬细胞的免疫活性,提高其对鳗弧菌的杀菌功能和许氏平鮋对鳗弧菌的抵抗能力。该重组HMGB1蛋白可作为免疫增强剂应用于鱼类鳗弧菌病害的防治。
青岛农业大学 2021-04-13
长非编码RNA作为新一代抗肿瘤治疗靶点的鉴定与核酸药物开发
1.痛点问题 尽管目前已有一系列临床治疗手段,但癌症仍然是人类健康与生命安全的最主要威胁之一,大多数癌症仍然有巨大的未满足医疗需求。抗肿瘤药物的研发依赖于靶点分子的鉴定。因此,依托于新的抑癌靶点,开发全新的抗肿瘤靶向药,是当前创新药研发的前沿。现有药物靶点主要是蛋白编码基因,所开发药物以靶向蛋白质的抗体药、小分子化合物药为主。 长非编码RNA(lncRNA)是近年来发现的一类不编码蛋白质的RNA分子,具有组织特异性强,功能复杂,种类数量大等特征。研究发现多个lncRNA与各种生物学过程相关,但是大多数lncRNA的生物学功能仍然未知。学术界已发现多个与肿瘤发生发展相关的lncRNA,但目前尚没有靶向lncRNA的抗肿瘤药物上市或在临床试验中。鉴于lncRNA复杂、多样化、特异性的生物学功能特征,这一大类分子有望成为新的疾病治疗靶点库。与已知的蛋白靶点相比,lncRNA研究少,易于获得原创、高价值的靶点专利。这要求基础研发工作在特定生理或疾病状态下,从成千上万的lncRNA中准确鉴定具有核心、基础生物学意义的lncRNA,并详细解析其细胞功能与分子机制,确定其作为疾病治疗靶点的可行性与科学基础。 2.解决方案 在此前的研究中,本项目组以肿瘤体系为研究对象,开发了基于信息论的多组学数据挖掘与lncRNA功能预测方法流程。在多种癌症中鉴定了具有核心生物学功能的lncRNA。例如,首次发现一个此前从未被研究过的lncRNA对于肝癌肿瘤细胞等高增殖率细胞的核仁结构及功能至关重要。研究证明该lncRNA在肿瘤中特异性地高表达,并且对于肿瘤细胞的快速增殖不可或缺,因此项目提出以该lncRNA作为肿瘤治疗靶点,开发抗肿瘤小核酸药或小分子化学药,控制肝癌发展。 项目技术核心是在肿瘤体系中鉴定重要lncRNA的技术流程,预期产品是针对一系列lncRNA新靶点的靶向药物。 3.合作需求 1)资金需求:针对新靶点lncRNA的小核酸药临床前研发需要的资金投入,在IND申报前需约2500-5000万元人民币; 2)孵化资源:公司研发所需办公及研发场地、实验室、计算服务器、分析与测试公共实验室等; 3)团队:生物医药科技公司管理团队、核酸药临床前研发团队、商务开发与合作团队、财务、法务等支持团队; 4)CRO公司合作:小核酸序列大规模合成、敲低效率验证、动物模型、药物毒理、药代动力学、免疫原性等指标测试; 5)大型医药公司合作:商讨未来技术转让方案,利用大型医药公司临床开发资源,开展临床研发合作; 6)药物递送平台合作:针对小核酸药靶向递送需求,开展不同递送工具的合作开发; 7)临床医院合作:针对临床治疗需求,开展小规模IIT临床试验,准备IND申报; 8)基础研究合作:与lncRNA研究领域内国内外基础研究团队合作,开发新的lncRNA靶点。
清华大学 2022-10-24
首页 上一页 1 2
  • ...
  • 42 43 44
  • ...
  • 61 62 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    64届高博会于2026年5月在南昌举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1