高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
两万多拟南芥公共RNA-seq文库的生物大数据在线分析平台
发布的数据库(Arabidopsis RNA-seq database, ARS)整合了来自GEO、SRA、ENA和DDBJ数据库的20,068个拟南芥RNA-seq数据,提供了“Google-style”在线查询工具。该研究对所有文库进行了基因表达水平定量和共表达网络分析,并将所有文库进行分类,总共涉及1176个突变体、1102种处理条件、12个
南方科技大学 2021-04-14
一种全电数字化两自由度力控磨头装置
本发明属于智能加工制造技术领域,其公开了全电数字化两自 由度力控磨头装置,其用于复杂曲面零件的打磨及抛光,所述全电数 字化两自由度力控磨头装置包括双自由度伺服平台、力传感器、磨头 电机、磨头及控制组件,所述力传感器连接所述双自由度伺服平台及 所述磨头电机,所述磨头连接于所述磨头电机,所述控制组件分别连 接于所述力传感器、所述磨头电机及所述双自由度伺服平台。本发明 提供的全电数字化两自由度力控磨头装置的自动化程度高,成本低, 加工效率高,灵活性较高,且可以减小工件的加工变形及加工区的应 力集中,避免了
华中科技大学 2021-04-14
一种两性键合硅胶固定相及其制备方法和应用
本发明公开了一种两性硅胶固定相及其制备方法和在及其在样品分离中的应用。本发明以无水甲苯 作为溶剂,将硅胶与叔氨基硅烷偶联剂和羧基硅烷偶联剂混合,在三乙胺存在下回流或室温反应,即得 到键合有叔氨基官能团和羧基官能团的两性硅胶固定相。本发明液相色谱硅胶固定相的制备方法简单, 
武汉大学 2021-04-14
接枝两性离子提高聚酰亚胺膜抗污染性能的方法及产品
本发明公开了一种提高聚酰亚胺膜抗污染性能的方法及产品, 属于聚酰亚胺膜的改性领域。本发明包括如下步骤:将聚酰亚胺膜浸 渍在二胺溶液中 0.1h~24h,之后取出洗净;将洗净的聚酰亚胺膜浸渍 在酸性溶液中 1h~48h,之后取出洗净。本发明利用了两性离子具有 良好的亲水性的特点,成功地将两性离子接枝到聚酰亚胺膜的表面, 赋予聚酰亚胺膜较高的亲水性能,明显提高了膜的亲水性,进而提高 抗污染性能,并能减少微生物吸附和抑制生
华中科技大学 2021-04-14
教育部召开党组扩大会传达学习2024年全国两会精神
要实施高等教育综合改革试点,加快拔尖创新人才培养,把大科学研究范式贯穿高层次人才培养全过程,实施区域创新合作专项行动,优化学科专业和资源结构布局,大力提高职业教育质量。
微言教育 2024-03-14
海峡两岸高等教育融合发展学术活动在福州举行
4月15日,海峡两岸高等教育融合发展学术活动在福州举行。
中国高等教育学会 2024-05-11
一种基于 D2D 和上行 NOMA 的两用户通信方法
本发明公开了一种基于 D2D 和上行 NOMA 的两用户通信方法,包括:获取当前网络信息和用户信息;两个用户需要在通信时长 T 内完成各自的数据传输,当距离上满足 di>dj>d0 且 dj+d0>di,i≠j,i,j∈{1,2}时,用户 i 在通信时长 T 内使用全部频谱资源将数据量 Di 通过D2D 方式传输给用户 j;用户 j 工作在 FD 模式,在通信时长 T 内使用全部频谱资源通过 NOMA 方式将数据量 Di 和 Dj 上传给基站,其中用户 i 的数据作为强用户数据,基站首先对其进行解码,然后再解码用户 j 的数据;本发明提供的结合 D2D 技术的上行 NOMA 高能效通信方法,与采用上行 OFDMA 的通信方法相比,在保证系统频谱效率不变的情况下,较好地提升了系统能效。
华中科技大学 2021-04-11
基于机器视觉的路面病害检测关键技术
路面病害分为表面破损(如裂缝)、路面变形(如沉降)和结构病害(如层间脱空)三大类。该技术以路面检测成果为全卷积神经网络的输入信号,对于表面破损,其输入为多功能检测车拍摄的路表图像;对于路面变形,输入为三维检测车测取的三维路面模型;对于结构病害,输入为探地雷达信号图像。通过海量数据的训练、测试,可实现上述三类病害的自动化识别、分类和测量,为路面养护工程提供数据支撑。此外,该技术在保证与人工识别结果相同的精度下,可将数据处理速度提高千倍以上。 
华东交通大学 2021-05-04
关于蛋白质机器动力学的研究
泛素-蛋白酶体体系(Ubiquitin-Proteasome System,简称UPS)是细胞内最重要的蛋白质降解通路,对维持生物体内蛋白质的浓度平衡,以及对调控蛋白、错误折叠或受到损伤的蛋白的快速降解起着至关重要的作用,参与了细胞周期、基因表达调控等多种细胞进程,由UPS失常引发的蛋白质新陈代谢异常与众多人类重大疾病直接相关。2004年,Aaron Ciechanover, Irwin Rose和Avram Hershko三位科学家被授予了诺贝尔化学奖,以表彰他们对该降解通路的发现。UPS中蛋白酶体是细胞中最基本的、最重要的不可或缺的、最为复杂的大型全酶超分子复合机器之一,人源蛋白酶体全酶包含至少33种不同的亚基,总原子质量约为2.5MDa。美国FDA批准的多种治疗癌症的药物分子即以蛋白酶体为直接靶标。近年来,随着冷冻电镜技术的发展和应用,人们对这一大分子机器的结构和功能研究得以不断深入。2016年,毛有东课题组与合作者报道了人源蛋白酶体基态的3.6Å冷冻电镜结构及其他三个亚纳米分辨构象,并首次发现一个亚稳态构象的核心颗粒(Core Particle,简称CP)底物转运通道处于开放状态(见PNAS 2016, 113: 12991-12996)。2018年4月,该课题组又报道了6个ATPγS结合状态下的26S动态结构,包括三个CP开放态对应的亚稳简并态近原子分辨(4~5Å)结构(见Nature Communications 2018, 9: 1360)。尽管这些工作揭示了蛋白酶体的基本架构和内在运动行为,但由于缺乏蛋白酶体与底物之间的相互作用,人们对于蛋白酶体如何实现底物降解的原子水平工作机制仍一无所知。此外,尽管冷冻电镜技术近年来广泛应用于分析具有动态特征的蛋白复合体结构和平衡态构象,但对其中间态结构和非平衡构象分析的分辨率水平往往局限在4~6埃或更低,离真正的全原子水平动力学分析还有相当一段距离。 为了真正实现原子水平的蛋白酶体底物降解动态过程的冷冻电镜三维重建和动力学表征,毛有东课题组攻克了两大技术难题。其一,如何在蛋白酶体完成底物降解之前抓到它的所有可能的中间态构象?课题组发展了一种新颖的核酸置换法,利用ATPγS降低AAA-ATPase激酶水解活性的特点,在底物降解中间过程,通过将ATP快速置换成ATPγS,结合快速冷冻的优势,从而扑捉到蛋白酶体在底物降解过程的中间态。其二,如何在从冷冻电镜数据中分析出更多构象的同时,还把分辨率做到3埃甚至更好?课题组通过多年持续努力,发展了多种基于人工智能和机器学习的冷冻电镜图像聚类的新型算法,并针对蛋白酶体的动力学特征,设计了一套极其有效的整合了多种算法的多构象分类流程。通过这两套技术方案的完美结合,课题组成功解析了人源蛋白酶体在降解底物过程中的七种不同的、但差别甚微的、高分辨原子水平的天然态构象(Native states),完整展示了蛋白酶体从泛素结合到去泛素化,再到底物转运的动态过程。与同期在Science上发表的与底物结合的酵母蛋白酶体的4.2-4.7埃冷冻电镜结构(Science doi: 10.1126/science.aav0725,来自加州伯克利分校和Scripps研究所)相比,该Nature论文不仅总构象数量多一倍,全部构象分辨率还高1-2埃。由于Science论文采用了抑制Rpn11去泛素活性的策略,其非天然态结构中底物并不能真正自由转运,所推测的机理仅限于底物转运这一步,对于其他三大Nature论文所回答重要问题均无法给出答案。这体现了该Nature论文不仅在实验方法的原创性上和数据分析水平和质量上,更在科学发现和问题探究的深度和广度上大幅超越了来自Science的竞争性论文。图一 七个利用冷冻电镜解析的精细原子结构完整揭示了从泛素识别、去泛素化反应、转运启动和持续降解的核心功能动态过程。 作为整个蛋白酶体的动力来源与运转核心,AAA-ATPase激酶分子马达展现出了三种不同的核苷酸水解协作模式,6个ATPase亚基协调工作,交替与底物发生相互作用。在去泛素化过程(EB态)中,处于对立位置的两个ATPase亚基Rpt2与Rpt4水解ATP,而Rpt5与Rpt6则释放ADP,ATPase内的底物转运通道被打开,使得底物可以进入轴心通道;与此同时,去泛素化酶Rpn11亚基与泛素及底物发生相互作用,执行其作为去泛素化酶的功能;在转运起始过程(EC态)中,相邻的两个ATPase亚基Rpt1与Rpt5会同时水解ATP,调控颗粒(Regulatory Particle,简称RP)发生大规模转动并释放泛素;在底物去折叠与转运过程(ED态)中,三个相邻的ATPase亚基会分别同步进行ATP的结合、ADP的释放与ATP的水解,这一过程会单向传递下去,将ATP水解释放的化学能转换为机械能,使得相应的ATPase亚基发生刚体转动,推动底物的去折叠和单向输运,同时CP的转运通道入口打开,底物被送入通道中进行降解。这些研究结果为几十年来对蛋白酶体功能的研究提供了宝贵的第一手原子结构和动力学信息,对于理解生物体内蛋白质的降解过程和一系列负责物质输运的ATPase马达分子的一般工作原理具有极为重要的科学意义。
北京大学 2021-04-11
基于AI 机器学习的影像组学模型研究
2019年12月以来,由SARS-CoV-2病毒感染导致的新型冠状病毒疾病(COVID-19)在全球开始蔓延。报道显示,SARS-CoV-2感染患者的中位住院时间为10天,而武汉患者在发病10天后症状有可能加重。因此,住院时间是COVID-19临床预后的重要指标之一。 目前,CT影像学已成为COVID-19肺炎的诊断和监测工具,主要表现为磨玻璃影、实变及混合密度影。然而,现阶段的影像学研究主要集中于对病灶的定性和半定量描述,缺乏对病灶的全定量分析。因此,基于前期提出的CT定量监测COVID-19肺炎病程,团队假设在CT病灶背后的高通量影像特征“隐藏”了患者预后转归的“秘密”。 本研究纳入了兰州、安康、丽水、镇江、临夏5家新冠肺炎定点医院,自2020年1月23日到2月8日期间住院患者的临床资料和首次CT资料,所有患者经RT-PCR证实SARS-CoV-2病毒感染。至2月20日,研究共纳入31例治愈出院的患者(排除14例未出院患者和7例首次CT检查无肺炎表现患者),并将10天作为住院时长的二分类阈值。基于有限的样本量,团队将4个中心作为训练队列,另外一个中心作为验证队列。通过自动分割肺叶和半自动分割病灶,31名患者中累计分割出72个病灶。在对病灶图像预处理后,提取影像组学特征并筛选。为了研究影像组学特征的稳定性,团队使用了Logistics回归模型和随机森林模型对筛选的特征分别进行建模和验证。​结果发现,6个筛选出的二阶特征在两种不同分类器中均表现出良好的预测价值。在外部测试队列中,Logistics回归模型的AUC为0·97(95%CI 0·83-1·0), 敏感性 1·0, 特异性0·89;随机森林模型的AUC为0·92 (95%CI 0·67-1·0),敏感性 0·75, 特异性1·0。随后,研究又纳入了2月20日-28日新出院的6名患者,利用已建立的影像组学模型可以正确预测所有6名患者的住院时间。 
东南大学 2021-04-10
首页 上一页 1 2
  • ...
  • 104 105 106
  • ...
  • 127 128 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    64届高博会于2026年5月在南昌举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1