高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
纳米粒子改性的SEBS热塑性弹性体材料
热塑性弹性体(TPE)是一类在常温下显示橡胶弹性,高温下又能塑化成型的高分子材料。由于它无需硫化就具有硫化橡胶的物理机械性能,能耗低;又有类似热塑性塑料的加工特性,加工工艺简单;边角料可完全回收,节省资源,有利环保。所以,自1958年问世以来,受到了极大的重视,被称为“第三代橡胶”。SEBS属于苯乙烯类热塑性弹性体,由聚苯乙烯硬段和氢化的聚丁二烯烃软段构成嵌段共聚物,具有优良的橡胶弹性、优异的耐候性、优异的耐低温性能、环保性能、着色性能等特点。SEBS很少单独使用。原因在于SEBS与传统的硫化橡胶相比,存在着刚性过大、压缩变形大、耐热性差等缺点,且单纯使用SEBS的价格昂贵。 本项目通过SEBS与纳米粒子、通用热塑性塑料等改性剂的熔融共混,改善了基于SEBS的热塑性弹性体在上述方面的不足。纳米粒子改性的SEBS热塑性弹性体材料可用于家用电器、体育用品、汽车材料、医疗器械、建筑业、制鞋业等许多领域。
上海理工大学 2021-04-11
改进的喷雾热分解法生产单分散超细粉体材料
可以量产/n通过对传统的喷雾热分解方法的改进,实现了喷雾热分解法在生产单分散超细纳米金属粉末上的应用。目前中试成功的超细纳米银粉生产工艺,生产出的银粉具有单分散、粒径小、熔点低等特点。。目前国内外工业化制备超细银粉的方法主要有机械研磨法与化学还原法,这两种方法存在一些固有的缺陷,比如采用研磨法生产出的银粉中容易混入铁,镍等元素,导致最终的银粉纯度不高,而化学还原法步骤繁多,控制复杂,同时会产生大量的废液与废气污染,。本项目主要有以下技术创新:。 1、采用改进喷雾热分解的方法制备纳米银粉,不用磨碎分级与化学还原的方法,制备过程中不混入任何杂质,得到的银粉纯度高,达到国际先进水平。。 2、采用特殊的处理技术,可以有效改善产品的单分散性,并控制产品粒径与形貌。。 3、产品做到单分散、稳定而且可以根据客户要求精确控制银粉粒径与形貌。。 4、做到清洁生产,零污染,零排放,没有废气、废液、粉尘等环境污染。。 5、全封闭生产过程,操作员没有粉尘暴露。整个工艺采用封闭式、自动化生产,使得整个生产过程得以连续进行,大大的提高了生产效率,降低了后续处理成本。
武汉工程大学 2021-04-11
聚氨酣弹性体/无机纳米功能复合材料
项目简介: 本项目以纳米 TiN 等陶瓷颗粒为填料, 用聚四氢映喃配二醇
西华大学 2021-04-14
粘结型钐铁氮、钕铁氮、铁氧体永磁粉复合永磁材料及其制备方法
一种粘结型钐铁氮、钕铁氮和铁氧体永磁粉末的复合永磁材料,由重量百分数为83%~98.9%钐铁氮永磁粉、钕铁氮永磁粉和铁氧体永磁粉末的混合磁粉、1%~15%的高分子粘结剂及0.1-2%的助剂组成。混合磁粉的配方(按重量百分数计)为:钐铁氮永磁粉2%~96%,钕铁氮永磁粉2%~96%,铁氧体永磁粉2%~96%。复合永磁材料制备方法包括:模压成型、注射成型、挤出成型以及压延成型。该产品具有内禀性能优异,价格低廉,耐高温,抗腐蚀和氧化性能良好,特别是通过调整混合磁粉的配比,可实现性能与价格可调的特点。
四川大学 2021-04-11
中伟新材料股份有限公司锂电池正极材料前驱体的成果
中伟新材料有限公司,是全球领先的专业前驱体材料和循环材料综合供应商。公司行业地位突出,按正极前驱体出货量,在全球排在第二位。其技术实力和研发能力较强,背靠中南大学这一国内金属材料学科重镇,有超过300名研发人员和完善的研发测试设备。公司的客户非常优质,动力电池全球前五企业均为其客户。公司的财务数据和增长较好,收入连续多年100%增长。中伟新材料已与国内外数十家知名企业达成战略合作,公司自主开发的4.47V高电压四氧化三钴、NCM811等核心产品成功跻身中国、欧美、日韩地区世界500强企业高端供应链,被广泛应用于各大3C数码领域、动力领域及储能领域。目前,公司已在贵州铜仁、湖南宁乡分别建立西部、中部产业基地,并在天津布局北部产业基地,覆盖南北、辐射全国。点击上方按钮联系科转云平台进行沟通对接!
中南大学 2021-04-10
[5月23-24日·长春]教育科技人才一体化发展论坛
为深入贯彻习近平总书记关于教育的重要论述和全国教育大会精神,贯彻落实《教育强国建设规划纲要(2024—2035年)》和三年行动计划,展示宣传高校高质量建设成果,助推专业化创新型教师队伍建设,助推产教融合协同发展,中国高等教育培训中心决定举办“教育科技人才一体化发展论坛”。
中国高等教育学会 2025-05-09
三维石墨烯体相材料的制备及其性能研究
制备在宏观尺度上具备二维单片石墨烯的独特本征性质的石墨烯三维体相材料是材料学研究中兼具学术价值和实用意义的重大挑战。本项目制备得到了一种三维石墨烯宏观体相材料,其由大量独立且悬空的二维石墨烯单元通过片层边缘的化学键构筑而成。该材料具有良好的机械性能,在常温可见光下作用下具有电子发射能力,在瓦特功率级别的可见波段激光或聚焦的太阳光照射下,厘米尺寸的此石墨烯材料样品可以在真空条件下实现有效的直接光驱动,此现象为国内外所首次观察及报道,为石墨烯带来了一种激动人心的潜在应用价值。上述材料的制备及相关性能研究还可为石墨烯在催化,能源转换与存储等领域的应用提供材料支持与相关理论支撑。
南开大学 2021-02-01
国际领先的牙体硬组织原位修复及脱敏材料
" 随着社会文明程度的提高,人类越来越重视口腔健康和牙齿相关疾病的防治,全球口腔医学材料及器械市场高达200亿美元,年增长率超过10%。项目团队基于临床需要,研制了一系列APD生物医用高分子材料,具有防治牙齿敏感症、原位修复牙体硬组织等多种功能。拥有完全自主知识产权,并已完成动物实验等临床前研究,项目团队已经完成初步融资,正在进行产业化开发。 "
四川大学 2021-04-10
高性能复合型髋关节股骨假体材料及产品
研发阶段/n目前国内生产使用的主要是金属关节,虽然其价格低廉,但仍存在断裂、腐蚀、股骨头磨损等问题,进口人工关节价格昂贵。高纯氧化铝生物陶瓷适用于矫形关节假体部件的替代材料及制品,是一种生物相容性好、耐腐蚀及耐磨损的生物惰性材料。氧化铝陶瓷与金属复合的人工关节,结合了陶瓷生物相容性好、耐磨及金属抗折强度高、韧性好的优点,开发生物陶瓷与金属复合及配伍的人工髋关节,能改变目前国内无生物陶瓷人工关节生产的局面,提高我国人工关节产品的档次,参与国外产品的竞争,为我国髋关节患者提供高质量、价廉的人工髋关节产品
武汉理工大学 2021-01-12
三维石墨烯体相材料的制备及其性能研究
制备在宏观尺度上具备二维单片石墨烯的独特本征性质的石墨 烯三维体相材料是材料学研究中兼具学术价值和实用意义的重大挑 战。本项目制备得到了一种三维石墨烯宏观体相材料,其由大量独立 且悬空的二维石墨烯单元通过片层边缘的化学键构筑而成。该材料具 有良好的机械性能,在常温可见光下作用下具有电子发射能力,在瓦 特功率级别的可见波段激光或聚焦的太阳光照射下,厘米尺寸的此石 墨烯材料样品可以在真空条件下实现有效的直接光驱动,此现象为国 内外所首次观察及报道,为石墨烯带来了一种激动人心的潜在应用价 值。上述材料的制备及相关性能研究还可为石墨烯在催化,能源转换 与存储等领域的应用提供材料支持与相关理论支撑。 项目特色: 1.制备了基于二维石墨烯单元通过片层边缘的化学键构筑而成 三维石墨烯体相材料,该材料不仅保留了二维石墨烯材料的本征性质, 而且具备优良的机械及光电性能。 2. 在国内外首次观察到厘米级尺寸的裸眼可见的宏观石墨烯样 品,只依靠瓦特级别的光作为单一驱动源,即可实现较大距离(数十厘 米)的有效的运动,并提出了光致电子发射驱动的机理解释上述三维 石墨烯体相材料独特的光驱动, 3. 上述材料的制备与性能研究揭示通过有效合理的结构构筑手 段,能够得到以二维石墨烯作为构成单元,并有效保留其独特二维性 质和兼具三维宏观形态的石墨烯体相材料,此项研究为其它二维材料 的开展类似工作并拓展其应用提供了范例和思路。已取得的成果: 项目的标志性研究结果于 2015 年 6 月在线发表于 Nature Photonics,并于 2015 年 7 月正式发表(Nature Photonics, 2015, 9, 471- 476)。杂志同期以“Two-dimensional materials: Lift off for graphene” 发表了专题评论。英国著名科普杂志 New Scientist 以“Spacecraft built from graphene could run on nothing but sunlight”为题报道了此研究, 指出该成果“再为石墨烯这种优良材料增添了一种惊人的性能”。国 内主要媒体包括人民日报、光明日报、新华网以及多家门户网站等均 对此研究进行了报道,中央电视台《新闻联播》栏目于 2015 年 6 月 21 日也对此进行了报道。 市场应用前景: 空间飞行器是人类探索宇宙的重要工具,而动力源问题一直羁绊 着人类无法走得更远。目前几乎所有的航空、航天飞行均采用化学驱 动,即通过喷射燃烧的化学物质来获得驱动力,光直接驱动飞行是科 学界和航空界多年的梦想。
南开大学 2021-04-13
首页 上一页 1 2
  • ...
  • 7 8 9
  • ...
  • 295 296 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    63届高博会于5月23日在长春举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1