高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
一种磁纳米温度成像方法及系统
本发明公开一种磁纳米温度成像方法,首先,对磁纳米粒子样品所在区域同时施加恒定直流磁场和交流磁场,采集磁纳米粒子的交流磁化强度信号,检测出各奇次谐波幅值;然后,将恒定直流梯度场替换为含梯度磁场的组合直流磁场,采集磁纳米粒子的交流磁化强度信号,检测出各奇次谐波幅值;计算两次谐波幅值差值;利用朗之万函数的泰勒级数展开建立奇次谐波差值与温度的关系式,求解关系式获得在体温度;最后,改变直流梯度场至下一位置,直到完成整个一
华中科技大学 2021-04-14
一种显微层析成像方法与装置
1. 痛点问题 在常规显微系统中,宽视场与高分辨率不可兼得。此外,基于单光子照明的成像方式一般均不具有层析能力,极大地限制了其应用范围。 2. 解决方案 图1 完整宽视场、高分辨率成像示意图 本发明公开了一种显微层析成像方法与装置。包括:在投影器件上依次加载所需的各照明图案,利用光学中继透镜组以预设的缩放比例中继到样本面对相应子视场进行激发,子视场中被不同照明图案激发的荧光信号依次通过光学中继透镜组,并以预设的缩放比例中继到相机靶面,实现高分辨的子视场图像的获取;通过二维横向扫描器件使得光束在样本面上产生横向偏移,实现超大视场的不同子视场的结构光图像及其均匀光图像的获取(图1);通过轴向扫描器件使光束在样本轴向产生偏移,实现对样本的轴向扫描;对获取的图像依次利用结构光层析算法、图像拼接算法、三维重建算法,最终得到三维光学层析图像。本发明具有宽视场、高分辨率及三维层析成像的性能。 合作需求 寻求在显微仪器领域有相关技术开发、市场推广经验,能推进本发明落地的高技术光电企业。
清华大学 2021-11-24
一种光片显微成像转换装置
本发明公开了一种光片显微成像转换装置,包括:光片激光光 源、样品夹持器、以及运动器;所述光片激光光源,产生光片激光, 水平照射在被固定于样品夹持器样品上;所述运动器,与样品夹持器 连接,用于带动样品夹持器在与竖直方向夹角小于 15 度方向上运动。 本发明提供的光片显微成像转换装置,是一种小型化、低成本的转换 装置,能通过加装在普通的倒置荧光显微镜上,使其具备光片显微成 像的能力,通过少量改装实现三维成像上的质的突破,
华中科技大学 2021-04-14
新型三维乳腺超声层析成像设备
目前医学影像设备行业正处于快速增长时期,尤其是乳腺癌筛查影像设备,预期市场规模数百亿。本项目属于生物医学超声学中的超声层析成像技术领域。 乳腺癌已经是全球发病率最高的癌症,其早期筛查成像至关重要。现有的主要筛查成像方法有:乳腺X线摄影(乳腺钼靶)、乳腺超声和乳腺核磁,但现有方法均存在不足。首先,乳腺钼靶可获得高分辨率的乳腺二维投影图像,但是其图像中可疑组织会与乳腺组织相互重叠,尤其对于乳腺含量较高的致密乳房,很难有效筛查;第二,乳腺超声可以获得乳腺的断层图像序列,从而避免可疑组织与乳腺组织的相互重叠,但是其图像质量欠佳,且严重依赖医生技术;第三,乳腺核磁可提供乳房的三维图像,但其不仅比较笨重,而且价格非常昂贵,不适用于大规模早期筛查。 针对现有乳腺超声技术的局限性,新型乳腺超声层析成像可自动获取高分辨率的三维乳腺图像。该技术采用超大孔径环阵探头,实现360度全向聚焦合成孔径成像,从而获得超高分辨率反射图像;同时,乳腺超声层析成像设备通过自动机械移动环阵探头,实现自动化的乳腺三维成像,降低了对操作医生技术水平的依赖性。此外,该技术还能利用透射波的传播时间及强度,重建定量的声波传播速度分布图像和声波衰减分布图像。 本项目的成果是一款创新型三维乳腺超声层析成像设备,该设备作为新型乳腺癌筛查工具,能够自动获取三维高分辨率乳腺图像。核心技术成像流程如下:首先,受检者需平卧在床上,使乳房通过床上的一个开口自然下垂,浸入开口下方的水箱中,并由环形超声换能器阵列包围乳房,通过多通道收发前端和多路复用器,依次控制各超声换能器发出声波,同时其他换能器接收回波和透过波信号。核心技术借助超大孔径环阵探头显著提升传统超声图像质量,利用透过波声速信息解决相位误差问题,结合机械移动自动获取三维图像,并输出最终筛查结果。该设备的主要客户群体包括各级医院、医疗体检机构和第三方医学影像中心。 目前该项目在持续研发完善中,截至2022年,该技术已经完成了关键核心技术包括环阵超声换能器、128通道多路收发前端、2048通道多路复用器和成像算法(如图)。
北京航空航天大学 2023-03-24
一种三色荧光显微成像系统
本发明公开了一种三色荧光显微成像系统,其包括三色激光合 束模块、第一二向色镜、物镜以及三色荧光成像模块;所述三色激光 合束模块用于将三种单色光合并成一束三色激光,投射在第一二向色 镜上;第一二向色镜反射激光同时透射荧光,其用于反射三色激光, 投射在物镜上;所述物镜用于透过三色激光并收集激发的混合荧光, 并将收集到的混合荧光投射在第一二向色镜上,第一二向色镜用于透 射混合荧光,投射在三色荧光成像模块上;所述三色荧光成像
华中科技大学 2021-04-14
荧光与核素双模载体小动物成像系统
1 成果简介荧光与核素在体小动物成像系统是在国家 863 计划的支持下研制的世界首台小动物在体(活体)分子成像系统。该系统具有同时实现荧光断层成像与正电子发射断层成像(PET)的双模式信息融合分子影像检测功能,可以以 3D 方式显示活动物体内任何位置的特定细胞和分子事件。在该系统中,发展了旋转扫描式动物在体全景成像检测技术和断层扫描三维重建技术,有效解决了伽玛光子信息采集与荧光图像获取相互干扰的难题,同时提高了荧光的检测深度;通过研发的光子漫射理论逆向算法,提高在体检测的空间分辨率和空间定位精度,结合 PET 深层透视的优点,可以 3D 方式显示活动物体内任何位置的特定细胞和分子事件。目前拥有 12 项专利。 该平台采用荧光和核素双模标记的检测方法和技术,研究者可以在一次实验活动中同时获取荧光、 PET 及双模融合的多种数据,并进行分析,从而可以更好更为全面地理解疾病产生的机理,研究药物的作用机制,也可以分析疾病耐药的发生过程,以及药效的持续时间等。研究人员能够使用该系统实时监测活体动物内部器官、组织与细胞、基因蛋白分子等不同层面的动态变化信息,开展在体水平的生命科学与医学科研和应用研究工作。例如,研究肿瘤和癌细胞在体生长、分化、凋亡、转移、扩善,药物在细胞、组织、器官层面的输送、扩散、代谢与定点释放,药物作用下体内肿瘤或癌细胞的生长、凋亡变化,以及与各种疾病相关的分子、细胞、组织的动态变化情况。 ( 1) 肿瘤小鼠荧光图像 ( 2)荧光与 PET 断层图像 上图 荧光与 PET 双模成像 系统特点:荧光与 PET 同时双模成像;动物在体 360゜全景无遮挡扫描成像;支持常规荧光或 PET 成像,也可以采集双模数据;荧光活体成像超越常规的浅表成像,支持 FMT 及小动物深度组织的成像。2 应用说明应用领域:药物研发和筛选;病理机理与病毒研究;新一代分子影像药物研发;药物代谢过程, 基因治疗效果及药效评价。
清华大学 2021-04-13
眼球仪模型眼球成像演示模型XM-426
XM-426眼球仪模型(眼球成像演示模型)   XM-426眼球仪模型由成人眼球、光源、校正镜片、活动成像显示屏及底座组成,通过眼球前后及在正中与水平成75°切面,示眼球壁三层被膜, 眼球内晶状体(可改变曲率),玻璃体和虹膜,由外向内三层被膜做成梯形切面,并示其各部结构,在眼球后部装一垂直眼球轴的剖面,以示视网膜成像,可调节晶状体,示远视、近视成像。   尺寸:放大3倍,45×14×27cm 材质:PVC材料   模型结构: 1、眼球成像演示模型由成人眼球、光源、校正镜片、活动成像显示屏及底座组成。 通过眼球前后极在正中与水平成75度切面,示眼球壁三层被膜,眼球内晶状体(可改变曲率),玻璃体和虹膜。由外向内三层被膜做成梯形切面,并示其各部结构。 2、在眼球后部装一垂直眼球轴的剖面,以示视网膜成像。 3、晶状体系有机玻璃制成,二张拉紧的透明橡胶薄膜,里面充满液体。 4、曲率通过改变波纹管的容积来改变薄膜的曲率。 5、光源:220V,15W-40W烛形灯泡作为光源,离眼睛恰好为明视距离。 6、校正镜片由不低于400度的近、远视镜片组成。
上海欣曼科教设备有限公司 2021-08-23
含污废热回收装置生产线
本项目采用自主研制的含污废热回收装备(耐污垢可清洗组合式栅板换热器),实现了高效节能换热器激光焊接(无模具)工艺制造技术,使换热器快速成型制造产业化。以高端节能创新技术,设计体积小的组合式栅板换热器,适应高耗能行业不同节能工艺和场地的需求,实现换热器的高效和可清洗功能;促进高耗能行业节能技术更新、设备和生产工艺的改造,显著地提高高耗能行业的能源效率,实现节能降耗的目标。耐污垢可清洗组合式栅板换热器可以使换热器传热能力增加10%~20%,壳程阻力下降50~70%,将大幅度提高换热器的节能潜力,实现节能25~35%。该换热器利用污垢形成机理,在线适时清洗,使换热器始终处于高效工作状态。该设备是适用于钢铁厂冲渣水余热回收、造纸厂黑液余热回收、 烟气余热回收等余热利用以及其它类似场所的通用换热器。
华东理工大学 2021-04-11
非接触式阵列磁控强化换热
在日常生活和工业生产中,寻求热物理性能优良的冷却介质并发展新型的强化换热和流动控制技术成为提高能源利用效率与节能减排的重要途径和有效手段。而液态金属流体(如镓、镓锡、镓铟锡和锂铅等)由于其对流换热系数高、液相温区宽、耐极限热流密度能力强、特定工况下材料相容性好及易于进行电磁控制等诸多优点备受关注。如电磁冶金、芯片散热、熔融3D金属流体打印、镍基合金焊接等。与常规流体相比,液态金属流体与电磁场相互作用可产生洛仑兹力,进而实现对不同流动区域的定向主动控制。磁钝体阵列作为涡流发生器对换热的促进作用要强于孤立磁钝体,当雷诺数< 500时磁钝体阵列尾迹是稳定的,虽然这些涡流对换热有促进作用,但换热性能综合因子<1;当雷诺数=600时磁钝体阵列尾迹的不稳定性对换热的促进更强一些。因此可以考虑用磁钝体阵列作涡流发生器来强化换热。
南京工程学院 2021-05-21
城市生活垃圾的热解处理设备
成果与项目的背景及主要用途: 随着经济的飞速发展和生活消费水平的提高,城市生活垃圾大量增加,垃圾 的堆放不仅占用大量土地,而且严重地污染环境,破坏生态平衡。 目前城市生活垃圾采用的处理方法多为:填埋处理、堆肥、焚烧与热解。综 合环境、经济、社会等各方面效益考虑,卫生填埋法工艺简单但占用大量土地, 而且周围环境恶劣,对复原土地的使用和填埋后可能的污染问题也值得推敲。堆 肥法只能处理垃圾中的有机质,垃圾必须经过分拣,肥料可以肥田植树,美化环 境。焚烧法处理垃圾速度快,无害化减量化彻底,但其排放污染情况严重,对人 类健康构成威胁。热解法可为人类提供清洁能源,方便生活,具有广泛前途,但 对垃圾热值的要求较高。 天津大学在天津市科委的支持下,研制的新型城市生活垃圾热解处理装置填 补了国内空白,国际上也刚刚开始研究。在长期实验的基础上开发出第三代垃圾 热解处理装置。 技术原理与工艺流程简介: 热解法也称为裂解法,是把有机废弃物在无氧或贫氧条件下加热 600~900℃, 用热能使化合物的化合键断裂,由大分子量的有机物转化成小分子量的可燃气体、 液体燃料和焦碳的过程。垃圾的热解处理是利用其中有机废物成分的热不稳定性, 在无氧或缺氧的条件下加热,使之在高温下分解,最终成为可燃气、液态焦油和 少量炭状残余物形式的过程。这是一种清洁的处理方法,且减量化程度高。这种 技术与焚烧法相比温度较低,无明火燃烧过程,重金属等大都保持原状在残渣之 中,可回收大量的热能。尤其是此种方式具有二恶英产生的逆条件,较好的解决了 垃圾焚烧技术的最大难题。 天津大学研制的新型垃圾热解资源化处理技术,其装置采用固定床炉型, 属 151天津大学科技成果选编 于上吸式热解制气。供给一定量的空气和水进入反应器,使废物部分自燃,生成热 量将支持热解反应。在垃圾热值足够高时,整个过程可以自动连续运行而无须外 界热量供应。工艺将氧化、还原、裂解及相关技术有机结合,垃圾依次经过干燥 层、干馏层、还原层和氧化层,与气体在逆向运动中进行充分热交换,在不增加烘 干设备和前分选处理设备的情况下对垃圾进行资源化处理,将有机废物在较高温 度下转变为气体燃料,热值接近城市煤气热值,经净化回收装置可加以利用。剩余 物仅为 5 %~8 %的无机灰。900 ℃ 的最高处理温度可基本消灭任何病菌,达到 无害化的处理效果。 成果水平及主要技术指标: 针对不同生活垃圾日处理量可定制不同处理能力的装置设备,以日处理量 15 吨生活垃圾的热解处理设备为例: 1.垃圾热解处理装置每日处理 15 吨生活垃圾,可产生约 2500~3000 立方米 可燃气(前期的试验已经获得此数据),热值约 2000 大卡/立方米(已经检验部 门验证); 2.垃圾处理后产生 5-8%左右体积的固体无机物,拟用做为小区花草的养殖 土; 3. 垃圾处理过程产生的二恶英低于国际最低标准 0.1ng TEQ/m3,我国制定 的标准是 1.0 ng TEQ/m3。 应用前景分析及效益预测: 以 15 吨装置为例,设备每年产生的经济效益分析指标: 1.15 吨装置的全年生活垃圾处理量为 5,000 吨(按 330 天计算),可获得 825,000m3 的可燃气,折合人民币 40 多万元(按 0.5 元/m3 计); 2.全年 5,000 吨垃圾就地处理可节省运输车辆 6,000 台次/年,节省交通费 用约 30 万元(按 50 元/台车计); 3.全年节省垃圾处理费用 15 万元(按 30 元/吨垃圾计)。 每年总计产生经济效益约 85 万元。 主要设备:设备本体、控制系统、垃圾存储仓、垃圾上料系统及相应的附属 设备等; 152天津大学科技成果选编 153 主要原材料及来源:金属、自控; 设备投资:每台 15 吨垃圾处理量的设备约计价格 100 万元; 总投资:总计消耗费用约 116 万元,估计两年运行即可收回成本。 合作方式及条件:技术转让
天津大学 2021-04-11
首页 上一页 1 2
  • ...
  • 38 39 40
  • ...
  • 87 88 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    64届高博会于2026年5月在南昌举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1