高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
多功能手持药品搅拌棒
本实用新型公开了多功能手持药品搅拌棒。解决现有的手持药品搅拌棒搅拌不充分的问题。该药品搅拌棒包括手持操作部分和与手持操作部分下端可滑动连接的可滑动搅拌部分,所述手持操作部分包括手持棒,所述可滑动搅拌部分包括滑动连接于手持棒下端的滑环,多根同时与滑环和手持棒底部边沿连接的并均匀分布于手持棒四周的可伸缩搅拌架。本实用新型搅拌时,可伸缩搅拌架张开,增加了搅拌的面积,搅拌充分,并且搅拌灵活,收缩时,进入容器或从容器中取出方便;本实用新型可通过人为灵活控制可伸缩搅拌架的伸缩,增加了使用的灵活性;本实用新型通过挤压胶头滴管能定量取液体药品,取下胶头滴管可直接吸食药品,使用方便,功能齐全,经济适用。
四川大学 2016-10-10
凹凸棒石基催化载体材料
光催化剂的实用化研究一直受到人们的广泛重视,目前的研究热点主要集中在探索新型光催化材料,将凹凸棒土的高吸附特性和光催化技术结合起来,将活性光催化剂负载在凹凸棒土表面,可以解决光催化剂的固定化问题,明显提高催化剂的光催化性能;同时,由于凹凸棒土的特殊棒晶状结构,使光催化剂易于沉降、分离,重复利用,解决了催化剂的重复利用问题,具有突出的优点和特点。 成果亮点 技术特点:一种CO2转化为环碳酸酯的高效纳米催化剂及其制备方法,通过将天然凹凸棒矿石粉碎筛选,去除杂质,得到凹凸棒粉末后分散到第一溶剂中,加入改性剂,搅拌反应,接着离心、洗涤、干燥处理,即得高效纳米催化剂。这种CO2转化为环碳酸酯的高效纳米催化剂的制备方法,得到的高效纳米催化剂作为一种高效催化CO2合成环碳酸酯的催化剂,具有催化剂原料易得、成本低廉,还具有选择性好、结构稳定的特点;制备得到的高效纳米催化剂在进行催化反应时,具有不使用溶剂,催化条件温和、底物适用范围广等优点,有潜在的工业化利用价值。
兰州大学 2021-01-12
凹凸棒石基无机环保颜料
无机环保颜料是无机颜料品种中新出现的一类能够满足人们对环境和健康要求的颜料。这类颜料的特点是组成中不含有对人体和环境有害的元素和化学物质。无机环保颜料中最重要的就是环保型彩色混相无机颜料。 成果亮点 技术特点:凹凸棒石是一种以凹凸棒石为主要成分的含水富镁、铝硅酸盐矿物,其独特的纳米棒状结构和表面活性硅烷醇基团赋予其大的比表面积和优异的吸附性能,可利用凹凸棒石的元素组成与结构特点,研制出不同种类的无机环保颜料,改善颜料纯度和色泽,降低颜料成本。
兰州大学 2021-01-12
新型纳米晶种材料及其在轻合金中的应用
轻量化和绿色制造是实现航空航天和交通运输等领域节能减排的重要手段,铝合金是其轻量化首选,但传统铝合金服役性能不能满足高端制造业发展的要求,制造过程也存在高污染、高能耗、质量不稳定等问题。以新思路、新原理、新材料、新工艺克服关键共性难题,突破铝合金力学性能瓶颈、取代落后工艺是必然选择。 本项目以多相熔体原子团簇演变调控为突破口,发明系列纳米晶种材料,提出纳米晶种技术,已成为大幅提升铝合金的综合性能和加工工艺性能的创新手段。 传统铸造铝硅合金生产中通常添加磷盐、赤磷或磷铜合金调控共晶及过共晶Al-Si合金中的初晶硅相的尺寸、形貌及分布,但存在磷量不可控、变质效果及产品质量不稳定、P2O5污染严重的问题。生产中通常采用传统Al-Ti-B及Al-Ti-C细化剂铝合金基体的α-Al枝晶,但是因Si“中毒”及Zr “中毒”,对含Si或含Zr铝合金几乎失去细晶强化作用。基于以上难题,山东大学发明了用于调控初晶硅相的Al-P系纳米晶种材料及用于铝合金晶粒细化的强效AlTiC-B系纳米晶种材料。 Al-P系纳米晶种:①节能减排:与传统工艺相比,避免了P2O5有毒气体排放,简化工序,节能降耗。②产品质量提升:实现了初晶硅尺度及构型高效调控,铝活塞铸件抗拉强度提升0%,体积稳定性和可靠性显著提高。③高纯化:可将铝熔体中Ca、Na、Sr含量分别由22 ppm、14ppm、14 ppm降低至1 ppm以下。 AlTiC-B系纳米晶种:①解决了Si、Zr细化“中毒”等难题,有效调控基体相。②提升了Al-Cu系铝熔体的流动性,解决了热裂、浇不足等行业难题。③提升了铸件性能:与传统Al-Ti-B相比,使A356合金屈服强度提高15%,延伸率提高37%;使2024合金抗拉强度由398MPa提升至550MPa,延伸率由9.8%提升至15.5%。 获奖情况:2016年度山东省技术发明一等奖,纳米晶种合金系列产品与耐热高强轻金属材料的创制及应用2009年度山东省技术发明二等奖,硅-磷和铝-磷合金研制与发动机活塞材料强化新技术2005年度山东省科技进步二等奖,富磷富碳中间合金的研究与应用2004年度教育部技术发明二等奖,高效Al-P中间合金及其变质处理
山东大学 2021-05-11
超临界水热合成纳米金属及其氧化物粉体
高校科技成果尽在科转云
西安交通大学 2021-04-10
高性能氮化硼纳米材料
纳米氮化硼材料兼具氮化硼和纳米材料的双重优势,广泛应用于航空航天、高端电子散热材料、吸附剂、水净化、化妆品等领域。项目团队开发出一种能够实现形貌和尺寸均一且具有超大比表面积多孔氮化硼纳米纤维的规模化制备技术,目前市场尚未实现规模化生产。该技术合成工艺简单可控、成本低、过程绿色环保,处于国际领先地位。 1 产品的应用领域 图2 高性能氮化硼纳米纤维粉体 图3 氮化硼纳米纤维粉体微观形貌
吉林大学 2025-02-10
单壁碳纳米管和石墨烯的制备及其在能源、光电器件和复合材料等方面的应用
项目成果/简介:1991 年发现的碳纳米管(CNT)以及 2004 年发现的石墨烯(graphene),分别是一维和二维纳米材料的典型代表,被认为是 21世纪的战略性材料。 本项目发明了一类新的催化剂和大量制备 SWNTs 的方法,实现了高质量单壁碳纳米管的宏量制备(图 1),纯度达 70%以上,并达到了产业化规模(达 200 公斤/年以上)。采用机械共混及"原位"聚合 等方法,使SWNTs 有效地分散于高分子基质中,获得了以环氧树脂、ABS 及聚氨酯等为基质材料,电导率达 0.2 S/cm、导电临界含量仅为0.06%、电磁屏蔽效果高达 49dB 的复合材料。 本项目首先发展了一种可大量制备的可溶性功能化石墨烯(SPFGraphene)的方法,实现了石墨烯的百克级制备(图 2)。通过透射电子显微镜(图 3)及原子力显微镜(图 4)确定了石墨烯的二维平面结构。 获得了可溶性石墨烯材料及柔性透明导电薄膜(图 5);制备了基于石墨烯的高稳定性有机光伏电池及复合材料。 图 5、基于石墨烯的透明电极材料 所研制的单壁碳纳米管及石墨烯已用于数十家科研机构的研究和相关产品/样机的研制,包括应用于国家 863 重大汽车电池项目(中科院物理所)和军工卫星电池项目(中国电子科技集团公司第十八研究所)等。已研制出晶体管、锂离子电池、超级电容器(图 6)以及高性能复合材料等多种产品,具有广阔的应用前景。应用范围:南开大学在碳纳米材料的制备及应用研究方面取得了一批开创性成果,该项目技术的推广,将促进我国新材料、微电子、储能、资源保护等领域的技术进步和发展,为我国在这一新型纳米材料领域占据有利地位,提高国际竞争力,做出重要贡献。
南开大学 2021-04-11
单壁碳纳米管和石墨烯的制备及其在能源、光电器件和复合材料等方面的应用
1991 年发现的碳纳米管(CNT)以及 2004 年发现的石墨烯(graphene),分别是一维和二维纳米材料的典型代表,被认为是 21世纪的战略性材料。 本项目发明了一类新的催化剂和大量制备 SWNTs 的方法,实现了高质量单壁碳纳米管的宏量制备(图 1),纯度达 70%以上,并达到了产业化规模(达 200 公斤/年以上)。采用机械共混及"原位"聚合 等方法,使SWNTs 有效地分散于高分子基质中,获得了以环氧树脂、ABS 及聚氨酯等为基质材料,电导率达 0.2 S/cm、导电临界含量仅为0.06%、电磁屏蔽效果高达 49dB 的复合材料。 本项目首先发展了一种可大量制备的可溶性功能化石墨烯(SPFGraphene)的方法,实现了石墨烯的百克级制备(图 2)。通过透射电子显微镜(图 3)及原子力显微镜(图 4)确定了石墨烯的二维平面结构。 获得了可溶性石墨烯材料及柔性透明导电薄膜(图 5);制备了基于石墨烯的高稳定性有机光伏电池及复合材料。 图 5、基于石墨烯的透明电极材料 所研制的单壁碳纳米管及石墨烯已用于数十家科研机构的研究和相关产品/样机的研制,包括应用于国家 863 重大汽车电池项目(中科院物理所)和军工卫星电池项目(中国电子科技集团公司第十八研究所)等。已研制出晶体管、锂离子电池、超级电容器(图 6)以及高性能复合材料等多种产品,具有广阔的应用前景。
南开大学 2021-02-01
单壁碳纳米管和石墨烯的制备及其在能源、光电器件和复合材料等方面的应用
1991年发现的碳纳米管(CNT)以及2004年发现的石墨烯(graphene),分别是一维和二维纳米材料的典型代表,被认为是21世纪的战略性材料。 本项目发明了一类新的催化剂和大量制备SWNTs的方法,实现了高质量单壁碳纳米管的宏量制备(图1),纯度达70%以上,并达到了产业化规模(达200公斤/年以上)。 采用机械共混及"原位"聚合等方法,使SWNTs有效地分散于高分子基质中,获得了以环氧树脂、ABS及聚氨酯等为基质材料,电导率达0.2 S/cm、导
南开大学 2021-04-14
单壁碳纳米管和石墨烯的制备及其在能源、光电器件和 复合材料等方面的应用
1991 年发现的碳纳米管(CNT)以及 2004 年发现的石墨烯(graphene),分别是一维和二维纳米材料的典型代表,被认为是 21 世纪的战略性材料。 本项目发明了一类新的催化剂和大量制备 SWNTs 的方法,实现了高质量单壁碳纳米管的宏量制备(图 1),纯度达 70%以上,并达到了产业化规模(达 200 公斤/年以上)。采用机械共混及"原位"聚合等方法,使 SWNTs 有效地分散于高分子基质中,获得了以环氧树脂、ABS 及聚氨酯等为基质材料,电导率达 0.2 S/cm、导电临界含量仅为0.06%、电磁屏蔽效果高达 49dB 的复合材料。 本项目首先发展了一种可大量制备的可溶性功能化石墨烯(SPFGraphene)的方法,实现了石墨烯的百克级制备(图 2)。通过透射电子显微镜(图 3)及原子力显微镜(图 4)确定了石墨烯的二维平面结构。
南开大学 2021-04-13
首页 上一页 1 2
  • ...
  • 35 36 37
  • ...
  • 455 456 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    64届高博会于2026年5月在南昌举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1