高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
广谱抗紫外纳米复合涤纶聚酯
在现有聚酯生产工艺基础上,广谱型抗紫外纳米复合粉体与PET聚酯的复合将赋予PET聚酯以良好的抗紫外性能,同时可改善聚酯的力学性能,对提升涤纶聚酯的附加值和提高我国涤纶纤维的国际竞争能力具有重要意义,同时也有利于该技术的推广和应用。本技术制备了纳米TiO ?2/ZnO和TiO 2 -SiO 2 -ZnO复合粉体。TiO 2 -SiO 2 -ZnO复合粉体的紫外性能在350-400nm波段内比金红石型TiO2明显改善。原位聚合法制备了抗紫外复合粉体复合涤纶聚酯。抗紫外纳米复合颗粒在PET基体中的分散均匀,团聚体的尺度在50-90nm之间,复合聚酯的特性粘度、熔点、羧基含量、凝聚粒子和二甘醇含量等重要指标均符合国家标准。高比表面的颗粒作为异相成核剂,提高了PET的结晶度,加快了PET聚酯的结晶速率。随着复合颗粒的增加,抗紫外PET复合聚酯体系表观剪切粘度随纳米粒子含量的升高逐渐下降。加入复合抗紫外颗粒后对PET的热稳定性影响不大。
华东理工大学 2021-04-11
无机纳米材料改性的抗静电腈纶
选用多种修饰剂对无机纳米抗静电材料ATO进行修饰、分散处理,系统地研究了无机纳米抗静电材料ATO悬浮液的稳定性、分散性和流变性,探索了多种纺丝工艺,表征了纳米ATO在纤维中的扩散、分布情况和纤维的结构与性能,解决了纳米ATO改性聚丙烯腈纤维的关键技术。并在腈纶纺丝过程中采用ATO悬浮液为添加剂,使得ATO纳米微粒能够通过扩散、迁移进入纤维表面,从而赋予PAN纤维良好的抗静电性能。 该课题开发的在纺丝过程中添加抗静电剂的工艺路线,避免了腈纶传统纺丝中的聚合物中加入添加剂所造成的纳米微粒凝聚、堵塞喷丝头的缺陷,具有设备投资少、效率高、操作简单、产品质量稳定的优点。该研究成果已在1000吨/年腈纶中试装置上得到应用,生产出质量优异的抗静电纤维。该抗静电腈纶在保持腈纶原有的力学性的基础上,纤维的体积比电阻率下降到108μcm水平,上染率达到90%。该课题所开发的纺丝添加改性剂的生产抗静电腈纶工艺技术,已申请二项发明专利。
东华大学 2021-02-01
纳米碳材料高效生产技术应用
纳米碳材料在人类的生产生活中正显示出越来越多的重要作用,具有广阔的市场空间。碳纳米材料生产由于成本高及部分技术上的瓶颈制约了大规模生产,市场拓展减缓。四川大学研发团队经过十余年的研究和开发,采取研发创新的高新技术,可高效低成本地生产高附加值碳纳米材料(纳米碳管,纳米碳纤维)。 新技术的指标主要有催化剂性能指标和碳纳米管纯度指标。碳纳米管 CVD 制备过程中催化剂的性能将直接影响所生产的碳纳米管的性能。碳纳米管的技术指标主要有反应温度、制备 CNTs 单位质量产量、及原料固碳率等。本技术中催化剂反应温度低于800 ℃, 催化剂的产碳能力可达CNTs 60 - 120 kg/kg cat, 原料单程固碳率为 15%-50%;纳米碳材料纯度高,在85%-98%。碳纳米管的纯度高,制备的碳纳米管纯度超过85%;有的达到 98%。此技术路线可行,实验室小试阶段已完成。 碳纳米管、碳纤维是近十年飞速发展的新型纳米材料,具有很大的商业价值和用途,附加值高。碳纳米管可以作为模具制备出最细的纳米尺度的导线,或者全新的一维材料,在未来的分子电子学器件或纳米电子学器件中得到应用。制备的微型导线可以置于硅芯片上,用来生产更加复杂的电路。利用碳纳米管的性质可以制作出很多性能优异的复合材料。例如用碳纳米管材料增强的塑料力学性能优良、导电性好、耐腐蚀、屏蔽无线电波。使用水泥做基体的碳纳米管复合材料耐冲击性好、防静电、耐磨损、稳定性高,不易对环境造成影响。碳纳米管增强陶瓷复合材料强度高,抗冲击性能好。碳纳米管和金属形成金属基复合材料;这样的材料强度高、模量高、耐高温、热膨胀系数小、抵抗热变性能强。
四川大学 2021-05-11
多品种小批量新型纳米材料
成果简介:当代化工、制药等领域正在面临深刻变革,新材料的出现,助推了这一趋势。山东大学科研团队长期致力于各种新型纳米材料的研制,获得了多个品类的新型纳米材料。 ① 新型碳纳米材料 以块体富碳材料和小分子有机化合物为原料,利用混酸回流、无溶剂热解等方法,制备了发光纳米碳;以多胺为原料,制备了超高分子量聚合物和碳纳米颗粒;以有机羧酸为原料,制备了生物相容性纳米碳。产品可用于发光二极管、荧光油墨、油田、食品等多个领域。 ② 结构精确的胶体银 以硝酸银和巯基烟酸为原料,碱性条件下制备了具有原子级精准结构的银簇,主体框架为六个银原子形成的八面体,外围被六个巯基烟酸配体保护起来。该纳米材料可溶于水,形成胶体银,具有抗菌等功效。 ③ 强吸附多孔材料 共价有机多孔材料具有比表面积大、稳定性高、可塑性强等优点。把对二氧化碳具有亲和作用的富氮基功能团引入共价有机框架材料,制备了一系列富氮基共价有机多孔材料,可选择性吸附二氧化碳。该方法可替代传统二氧化碳处理方法,即有机胺水溶液吸收法,能够降低能耗,减少环境污染。 ④ 纳米纤维素 利用酸解法,制备了纳米纤维素水分散液,品质高,性能稳定。 成果相关图片:
山东大学 2021-05-11
新型纳米药物载体 “隐形生物导弹”
完成团队简介:团队负责人宫永宽教授,日本佐贺大学博士、加拿大蒙特利尔大学博士后、美国西北大学生物医学工程系访问教授;现任西北大学材料科学新技术研究所所长、博士生导师、二级教授,西安市仿生生物材料与器件工程实验室主任。研究团队包括教授3人,副高职称6人,博士后及博、硕士研究生30人。 成果内容:将仿细胞膜结构涂层完美的体内隐形作用与肿瘤靶向分子的靶向作用结合,集成在纳米载体表面,可以制造出在血液中长循环、对肿瘤细胞高选择性结合的新型纳米药物载体“隐形生物导弹”。“隐形生物导弹”抗癌药物的开发应用,可从根本上解决癌症早期诊断困难、化疗毒副作用大的世界难题,获得巨大的社会及经济效益。 成果优势及用途:设计构建仿细胞膜结构的纳米载体获得了超长的血液循环半衰期(90小时,国际领先),具有优异的体内隐形性能;将叶酸等肿瘤靶向分子引入纳米载体表面可提高肿瘤细胞摄取4至8倍,靶向作用显著。    成果成熟度:癌症化疗药物“隐形生物导弹”已经完成实验室验证,需要进行大批量动物实验、申请临床批件。 预期成果收益:以“隐形生物导弹”抗癌药物为例,进一步市场化放大、获得国家临床实验批件约需投入5000万元(占50%)。若以建100吨/年规模的装置计算,产品生产成本约50万元/吨,销售收入200万元/吨产品,净利润约为15000万/年,投产后约8个月可收回成本。 成果知识产权情况 专利号 专利名称 专利状态 知识产权权属 ZL200610105049.9 仿细胞膜结构共聚物及其制备方法和应用 授权 独占 ZL200910219143.0 一种仿细胞外层膜结构修饰涂层制备的方法 授权 独占 ZL201010192087.9 仿细胞外层膜结构聚合物交联纳米胶束的制备方法 授权 独占 ZL201110205373.9 仿贻贝粘附蛋白和细胞膜结构共聚物及其制备方法和应用 授权 独占 ZL201310469385.1 一种通过聚多巴胺涂层构建功能化表界面的方法 授权 独占 陕科鉴字[2014]第019号 仿细胞膜结构聚合物表面改性技术及应用 鉴定成果 国际领先  
西北大学 2021-05-11
碳纳米管超级电容器
本项目产品目前超级电容器的致命缺陷,创新构建了以改性的碳纳米管(CNTs)为骨架,在此基础上合成以CNT为纳米茎、片状纳米镍基多元氧化物为枝叶的三维纳米结构材料。由该材料体系结构作为超级电容器正极材料时,CNT形成一维电子“快速通道”,在充放电过程中,电荷能通过CNT快速通道进行超高速交换。而片状纳米镍基氧化物具有巨大的表面积兼有非常强的电化学活性,使其赝电容效应的极具显著。该材料体系结构的另外一重大优点为在电容器制备过程中可以高效地避免纳米材料很容易出现的团聚现象,可以保证该三维纳米结构能获得最大的比表面积,从而使能量密度大大提高。因而,由该纳米三维结构电极材料制备的超级电容器可以获得了非常大的比电容、很大的能量密度和非常高的功率密度;更特别地,充电时间远小于锂离子电池和铅酸电池,在充电设备允许情况下,充电时间可以减小到2分钟以内;循环寿命也高于锂离子电池10倍以上;并且该超级电容器具有非常高的可靠行,制备和使用都非常环保和安全。该项目产品不仅仅可以广泛应用于原有的电容器应用领域,更特别地,可以代替现有巨大市场规模的铅酸电池和锂电池等二次电池而可广泛应用于电动自行车、新能源汽车、电站储能、工业电动运输装置、电动工具、便携式电子设备、通讯基站的备用电源、军事装备(单兵备用电源、瞬时大推力陆用装备、无人机、空间飞行器等)等,具有千亿级的市场规模。 技术指标: ? 能量密度:30-80Wh/kg(目前商业超级电容器的最高仅为8Wh/kg) ? 功率密度:2-20kW/kg ? 充电时间:小于5分钟 ? 循环寿命:大于5000次 项目产品的技术和性能优势: ? 超大的电容量:比传统电容器容量高6个数量级,比现有商业化的超级电容器的比能量高10倍,已经超过铅酸电池的能量密度。 ? 超高功率:比锂离子电池的功率密度高两个数量级以上。 ? 充电速度快:比锂离子电池快10倍以上。 ? 更长的充放电循环使用寿命:比锂离子电池的寿命高1个数量级以上。 ? 具有免维护:可随时浅充、满充和过充电、浅放电、全放电,对电池不会损害,无记忆效应。 ? 高可靠性:超级电容器从生产至使用过程中,均不会出现锂离子电池爆炸问题,即使在严重挤压和高温下也是安全可靠的。 ? 环保无污染:从生产、使用到报废回收,均不存在污染,是典型的绿色产品。 ? 生产成本低,生产工艺兼容性好:电极材料的制备工艺兼容常规材料的制备工艺;电容器的制备工艺可以完全兼容锂离子电池的生长设备,但工艺要求更加简单。
电子科技大学 2021-04-10
低成本纳米微晶陶瓷制备技术
本项目开发了一种全新概念的纳米陶瓷制备新工艺新技术。它采用天然矿物和工业废渣来取代高温烧结法中昂贵的纳米陶瓷粉末,使制备成本大幅降低。用高温溶胶-凝胶工艺从根本上解决了材料组成的不均匀性和残留气孔等问题,同时具有生产周期短、效率高、能耗低、制品的均匀性和可靠性好等优点。开发的原位受控晶化技术不仅使材料的晶粒尺寸控制在纳米级,而且还可对晶相数量和结晶形状进行有效控制,可获得具有球状或针状晶体的纳米微晶陶瓷。
湖南大学 2021-04-10
碳纳米管超级电容器
该项目产品不仅仅可以广泛应用于原有的电容器应用领域,更特别地,可以代替现有巨大市场规模的铅酸电池和锂电池等二次电池而可广泛应用于电动自行车、新能源汽车、电站储能、工业电动运输装置、电动工具、便携式电子设备、通讯基站的备用电源、军事装备(单兵备用电源、瞬时大推力陆用装备、无人机、空间飞行器等)等,具有千亿级的市场规模。
电子科技大学 2021-04-10
钼酸铜纳米棒复合电子封装材料
简介:本发明公开了一种钼酸铜纳米棒复合电子封装材料,属于结构材料技术领域。本发明钼酸铜纳米棒复合电子封装材料的质量百分比组成如下:钼酸铜纳米棒65‑80%、聚丙乙烯5‑7%、聚苯乙烯5‑7%、烷基聚氧乙烯醚0.05‑0.5%、乙酰丙酮钛3‑8%、聚乙烯蜡3‑7%、水3‑6%,钼酸铜纳米棒的直径为25‑100nm、长度为0.5‑3μm。本发明提供的钼酸铜纳米棒复合电子封装材料具有热膨胀系数低、导热系数高、耐老化及耐腐蚀性能优良、易加工、绝缘性好及制备温度低等特点,在电子封装领域具有良好的应用前景。
安徽工业大学 2021-04-11
飞秒-纳米时空分辨光学实验系统
为了更加直观地探究纳米世界,大量研究者致力于发展高时间-空间分辨能力的微纳探测技术,由龚旗煌院士负责的“飞秒-纳米时空分辨光学实验系统” 国家重大科研仪器研制项目正是围绕这一目标开展工作。近日,该重大仪器项目在基于超快光电子显微镜技术实现表面等离激元的多维度探测方面取得重要进展,相关成果于2018年11月19日发表在《自然通讯》 杂志(Manipulation of the dephasing time by strong coupling between localized and propagating surface plasmon modes, https://doi.org/10.1038/s41467-018-07356-x)。 基于金属纳米粒子的局域表面等离激元因其高局域强度,小局域尺度,高灵敏度等特点,被大量应用在不同领域。但是,几个飞秒的超短模式寿命(dephasing time)大大限制了其应用的广泛性和实用性。该工作设计的多层结构实现了局域表面等离激元和传播表面等离激元的强耦合(图1(a))。动态数值模拟结果也清晰地证明在强耦合下局域表面等离激元模式和传播表面等离激元模式之间的能量交换。近场方面,光电子显微镜对表面等离激元模式进行直接成像,大大突破了原有的远场探测技术的限制。并且结合不同激发光源,实现不同维度的探测。结合波长可调的激光光源,光电子显微镜在频域记录下表面等离激元模式随波长变化的强度演化过程(图1(b))。结合超快泵浦探测技术,光电子显微镜在时域记录下表面等离激元模式随时间变化的演化趋势。该工作更加深入并直观地探测强耦合体系中的能量转换过程,并通过强耦合中失谐量的改变实现模式寿命的操控,相较于未耦合的局域表面等离模式,强耦合的模式寿命由6飞秒(10-15秒)提高到10飞秒。这一研究成果对进一步发展基于表面等离激元的人工光合成、生物传感等应用具有重要的指导价值。图1、(a)光电子显微镜和多层结构示意图,(b)远场和近场探测曲线、不同波长激光激发下光电子显微镜记录的局域表面等离激元模式分布图。 此研究是由北京大学和日本北海道大学共同合作完成,北京大学物理学院博士生杨京寰和重大仪器项目的国际合作者、北海道大学助理教授孙泉为该文章的共同第一作者,北京大学龚旗煌院士和北海道大学Misawa教授为共同通讯作者。除了自然科学基金委的国家重大科研仪器研制项目,该工作还得到了科技部、北京大学人工微结构和介观物理国家重点实验室、极端光学协同创新中心、“2011计划”量子物质科学协同创新中心、日本文部科学省及学术振兴会、北海道大学纳米技术平台等单位的支持。目前国家重大科研仪器研制项目“飞秒-纳米时空分辨光学实验系统”的研制正在有序推进中,已经取得了一批包括此工作在内的阶段性成果。该实验系统的核心仪器是附带低能电子显微功能的光电子显微镜(PEEM), 其激发光的波长覆盖范围从极紫外到近红外(图2)。下一步该实验系统有望在二维材料、光电材料与器件、表面介观物理等研究领域大显身手、发挥积极作用。图2、北京大学研究团队的飞秒纳米时空分辨系统
北京大学 2021-04-11
首页 上一页 1 2
  • ...
  • 15 16 17
  • ...
  • 93 94 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    63届高博会于5月23日在长春举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1