高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
具有巨霍尔效应的纳米铁金属颗粒薄膜磁敏料
  巨霍尔效应是纳米铁磁金属颗粒薄膜中反常霍尔效应的巨大增强现象,是纳米材料的新效应,本课题利用巨霍尔效应原理,制备出磁场灵敏度高达125AT、具有实用价值的新型的纳米铁磁金属颗粒薄膜磁敏材料;并将颗粒薄膜应用于霍尔器件,替代现有的掺杂半导体活性层材料,制备出具有实用意义的新型霍尔器件原型。    本课题的研究,率先将纳米体系的新效应巨霍尔效应原理应用于传感器件领域,制备出具有实用价值的新型纳米材料及微型霍尔器件,具有原始创新性。与传统的半导体霍尔器件相比,基于纳米铁磁金属颗粒薄膜巨霍尔效应的霍尔器件具有体积小、制备工艺简单、高度集成、灵敏度高等优点,因此具有更为重要的应用价值。特别是纳米铁磁金属颗粒薄膜霍尔器件具有的工作温度宽、温度稳定性能优异、抗核辐射等优点,在微弱磁场探测、航天器的精确定位、导航以及军事装备等方面都具有十分重要的用途,市场前景广阔。   本课题利用巨霍尔效应原理,首次制备出磁场灵敏度高达125VAT、具有实用价值的新型的纳米铁磁金属颗粒薄膜磁敏材料;并将颗粒薄膜应用于霍尔器件,替代现有的掺杂半导体活性层材料,制备出具有实用意义的新型霍尔器件原型。主要创新点有将稀磁半导体引入纳米铁磁金属颗粒薄膜体系,替代绝缘体母体材料,使体系在厚度较小的情况下,仍能保持高温铁磁性;制备出不同种类的具有高灵敏和实用价值的纳米铁磁金属颗粒薄膜磁敏材料;将具有巨霍尔效应的纳米铁磁金属颗粒薄膜应用于传感器件,替代现有的掺杂半导体活性层材料,制备出具有实用意义的新型霍尔器件。    主要创新点有将稀磁半导体引入纳米铁磁金属颗粒薄膜体系,替代绝缘体母体材料,使体系在厚度较小的情况下,仍能保持高温铁磁性;制备出不同种类的具有高灵敏和实用价值的纳米铁磁金属颗粒薄膜磁敏材料;将具有巨霍尔效应的纳米铁磁金属颗粒薄膜应用于传感器件,替代现有的掺杂半导体活性层材料,制备出具有实用意义的新型霍尔器件。相关成果已获国家发明专利授权九项。    本课题的研究,将巨霍尔效应这一纳米体系的新效应应用于器件领域,以纳米铁磁金属颗粒薄膜替代现有霍尔器件的掺杂半导体活性层材料,是一个全新的技术,取得了多项具有原始创新性的技术成果,进一步推进了纳米材料在新材料技术、电子信息技术等领域]应用    应用状况:    与传统的半导体霍尔传感器件相比,基于纳米铁磁金属颗粒薄膜巨霍尔效应的霍尔传感器件具有体积小、制备工艺简单、高度集成、灵敏度高等优点,因此具有更为重要的应用价值。特别是纳米铁磁金属颗粒薄膜霍尔器件具有的工作温度宽、温度稳定性能优异抗核辐射等优点,在微弱磁场探测、航天器的精确定位、导航以及军事装备等方面都具有十分重要的用途,市场前景广阔。
河北工业大学 2021-04-13
一种超顺磁性纳米颗粒的制备方法及其产品
本发明公开了一种对蛋白质具有高吸附能力的水溶性超顺磁性氧化铁纳米粒的制备方法。其特征在于在共沉淀法制备四氧化三铁的过程中增加了适量的铝离子,Fe<sup>3+</sup>、Al<sup>3+</sup>、Fe<sup>2+</sup>在碱液作用下共沉淀,生成带有大量正电荷的超顺磁性氧化铁纳米粒。与传统共沉淀法制备四氧化三铁纳米粒相比,本方法制备的氧化铁纳米粒表面带有更多正电荷,因此在水溶液中的稳定性更好,对带有负电荷的天然蛋白质
华中科技大学 2021-04-14
一种用于微纳米颗粒表面修饰的装置和方法
本发明公开了一种用于微纳米颗粒表面修饰的装置,包括:反应腔,其内部形成的空腔用于作为前驱体与微纳米颗粒的反应空间;多个前驱体供应装置,其分别通过管道与所述反应腔相通以提供不同的前驱体;载气输送系统,前驱体通过该载气输送系统输出的载气输送到反应腔中;以及粉体颗粒装载装置,用于承载待修饰的微纳米颗粒;通过多个前驱体供应装置分别向反应腔交替地输送前驱体,并进入旋转的粉体颗粒装载装置中以与微纳米颗粒表面接触进行原子层沉积反应,从而在微纳米颗粒的表面形成包覆薄膜,实现表面修饰。本发明还公开了利用上述装置进行微
华中科技大学 2021-04-14
模拟酶催化增强的纳米金暗场免疫组化新方法
纳米金由于具有独特的光学性质和表面生物分子偶联能力以及新发现的模拟酶功能,而在生物医学检测中有重要的应用价值。将特异性抗体偶联在金纳米颗粒上构建纳米探针,可以特异地标记肿瘤细胞,一方面可以利用其模拟酶特性进行显色和显微镜读片,用来有效替代传统的天然酶标记显色技术;另一方面,可以利用纳米金暗场成像的功能,通过暗场显微镜读片,从而省略了酶底物显色的步骤和成本,同时可以突破前一种技术只能定性判读的局限性,实现基于暗场光散射图像分析的定量检测,使得定量免疫组化检测成为可能。经过多年研发与攻关,我们已经成功实现针对恶性淋巴瘤的特异标记及双模式检测(模拟酶明场显色和暗场成像)技术建立,实现针对临床乳腺癌Her2检测的模拟酶增强暗场免疫组化定量判读,建立了定量判读图像分析软件,完成临床病例检测120例,检测灵敏性优于95%,特异性优于90%,对推动临床定量免疫组化技术及实现更精准的病理诊断具有重要意义。
东南大学 2021-04-10
模拟酶催化增强的纳米金暗场免疫组化新方法
纳米金由于具有独特的光学性质和表面生物分子偶联能力以及新发现的模拟酶功能,而在生物医学检测中有重要的应用价值。将特异性抗体偶联在金纳米颗粒上构建纳米探针,可以特异地标记肿瘤细胞,一方面可以利用其模拟酶特性进行显色和显微镜读片,用来有效替代传统的天然酶标记显色技术;另一方面,可以利用纳米金暗场成像的功能,通过暗场显微镜读片,从而省略了酶底物显色的步骤和成本,同时可以突破前一种技术只能定性判读的局限性,实现基于暗场光散射图像分析的定量检测,使得定量免疫组化检测成为可能。经过多年研发与攻关,我们已经成功实现针对恶性淋巴瘤的特异标记及双模式检测(模拟酶明场显色和暗场成像)技术建立,实现针对临床乳腺癌Her2检测的模拟酶增强暗场免疫组化定量判读,建立了定量判读图像分析软件,完成临床病例检测120例,检测灵敏性优于95%,特异性优于90%,对推动临床定量免疫组化技术及实现更精准的病理诊断具有重要意义。
东南大学 2021-04-13
用于葡萄糖色比传感的ZnFe2O4纳米颗粒-ZnO纳米纤维复合纳米材料及其制备方法
本发明公开了一种ZnFe2O4纳米颗粒-ZnO纳米纤维复合纳米材料及其制备方法。首先采用共电纺丝方法,沉积得到复合纳米纤维,然后经过适宜的退火工艺制得ZnFe2O4纳米颗粒-ZnO纳米纤维复合纳米材料,ZnFe2O4纳米颗粒均匀稳定的附着在ZnO纳米纤维上。另外,本发明首次将ZnFe2O4纳米颗粒-ZnO纳米纤维复合纳米材料用于葡萄糖色比传感测试,测试方法简单且灵敏度高。ZnFe2O4-ZnO形成II型异质节半导体,交叉的能级结构有利于减小载流子的复合,提高其催化性能、传感性能。另外,将ZnFe2O4纳米颗粒复合到ZnO纳米纤维上解决了颗粒团聚问题,进一步增强了其催化性能与传感性能。
浙江大学 2021-04-11
一种壳聚糖‑植酸钠纳米颗粒及其制备方法和抑菌剂
本发明提供了一种壳聚糖‑植酸钠纳米颗粒及其制备方法和抑菌剂,属于纳米材料技术领域。本发明提供了一种壳聚糖‑植酸钠纳米颗粒的制备方法,将壳聚糖和植酸钠为原料,植酸钠结构中的六个磷酸基团与壳聚糖表面的游离氨基发生分子间或分子内静电作用交联而得到壳聚糖‑植酸钠纳米颗粒,对细胞无毒性。本发明提供的壳聚糖‑植酸钠纳米颗粒,粒径为50~150nm,所述纳米颗粒的尺寸小,与壳聚糖‑三聚磷酸钠纳米颗粒相比稳定性更
青岛农业大学 2021-01-12
一种形貌和粒径可控型淀粉纳米颗粒的制备方法
本发明公开了一种以天然多糖为模板制备形貌和粒径可控型淀粉纳米颗粒的方法,利用生物酶法制备的淀粉短直链,在短直链自组装制备纳米颗粒的过程中,原位添加天然多糖模板,筛选不同分子结构的多糖模板,控制淀粉纳米颗粒的形貌和粒径,制备出适合不同需求的、形貌(空心、纺锤体、球体)和粒径(20‑120nm)可控的纳米颗粒。本发明设备要求低,工艺简单,操作简便,反应温和,反应时间短,效率高,适合大规模生产。本发明制
青岛农业大学 2021-01-12
具有巨霍尔效应的纳米铁磁金属颗粒薄膜磁敏材料
本项目将巨霍尔效应这一纳米体系的新效应应用于器件领域,以纳米铁磁金属颗粒薄膜替代现有霍尔器件的掺杂半导体活性层材料,是一个全新的技术,取得了多项具有原始创新性的技术成果,进一步推进了纳米材料在新材料技术、电子信息技术等领域的应用。相关成果已获国家发明专利授权九项。 纳米铁磁金属颗粒薄膜霍尔器件具有的工作温度宽、温度稳定性能优异、抗核辐射等优点,在微弱磁场探测、航天器的精确定位、导航以及军事装备等方面都具有十分重要的用途,市场前景广阔。
南开大学 2021-04-14
一种制备纳米颗粒增强铝基复合材料的方法
本发明公开一种制备纳米陶瓷颗粒增强铝基复合材料的方法。 首先将纳米陶瓷粉、微米级铝或铝合金粉混合粉末在真空或氩气保护 下,通过干式高能球磨制备出纳米陶瓷颗粒体积分数为 10~50%的毫 米级复合颗粒。然后将毫米级复合颗粒直接熔化或者添加到铝或铝合 金熔体中,并施加超声振动,促进纳米陶瓷颗粒在金属熔体中的均匀 分散,制备出纳米陶瓷颗粒增强铝基复合材料。本发明中干磨法制得 的毫米级复合颗粒可以很容易地完全加入到金属熔体中
华中科技大学 2021-04-14
首页 上一页 1 2 3 4 5 6
  • ...
  • 122 123 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    64届高博会于2026年5月在南昌举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1