高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
自然界中首例 [6+4] 环加成反应的酶
鉴定首个高阶环加成酶,拓展了环加成酶的认知 一、项目分类 重大科学前沿创新 二、成果简介 南京大学化学化工学院梁勇教授,生命科学学院谭仁祥教授和戈惠明教授的科研团队,发现了抗幽门螺旋杆菌的潜在药物-汉城霉素并对其生物合成途径进行深入研究。通过多菌株基因组序列比对,对汉城霉素类生物合成基因簇进行了鉴定,利用微生物学,分子生物学、底物化学衍生化、体外酶促反应等手段从该基因簇中鉴定出一个新颖、可催化高阶环加成反应的酶。团队基于蛋白质晶体数据,量子化学计算和蛋白质定点突变技术,对该酶促动力学过程进行了深入解析,最终确定该酶通过“双过渡态”来同时催化产生6+4和4+2环加成产物。该特殊高阶环加成酶的发现,解答了“自然界中是否存在酶催化的高阶环加成反应”,这一持续五十余年的谜题。这类酶的发现将进一步拓展人们对周环反应酶的认识,启发科学家们将来利用和改造周环反应酶来实现有价值的分子转化。 成果于2019年4月以Letter形式发表于Nature。F1000评述该研究“鉴定首个高阶环加成酶,拓展了环加成酶的认知”,诺贝奖得主霍夫曼评述“这是在酶促反应中直接观察到的[6+4]环加成产物的首个例子……,该研究对酶促高阶环加成研究具有深远影响”。
南京大学 2022-08-12
高性能角蛋白酶的高效表达与应用研究
角蛋白酶是一种特异性蛋白酶类,可降解结构复杂、硬质难溶的角蛋白,具有多种优良的催化特性,在生物加工、绿色制药、废弃生物质处理、生物制革、生态纺织、洗涤剂等实际应用中备受关注,被认为是有着巨大应用潜力和市场前景的新一代蛋白酶类。 本项目从角蛋白酶基因挖掘、高效表达、性能改造及其应用研究等方面开展了一系列工作。课题组目前建立了角蛋白酶资源库,是我国拥有角蛋白酶基因资源产权最多和最具多样性来源的单位;实现了角蛋白酶基因在大肠杆菌及枯草芽孢杆菌等外源宿主中的克隆及高效表达;在 5L 罐上发酵酶活最高可达10000 U/mL 以上,是目前文献报道的重组角蛋白酶表达最高水平;项目已完成了 1M3 规模中试试验,成本降低 30%以上。在应用方面,本项目成功将角蛋白酶用于生物法制备纳米银粒子 AgNPs,与传统化学法相比,酶法合成的纳米银具有更好的抑菌活性。另外,项目组已首次开发出无胶原活力的高特异性角蛋白酶,具有高角蛋白活力,不会对皮革胶原造成破坏,能保护胶原结构完整性,可开发出不伤及皮肤真皮的洗涤剂产品、药品及化妆品,在生物制革领域也具有极大应用价值,可缓解制革工业中的烂皮现象;同时本研究所开发的角蛋白酶在活性多肽制备中也表现出良好的应用前景。
江南大学 2021-04-13
重组大肠杆菌生产磷脂酶D及转酯化产品开发
磷脂酶D(PLD,EC 3.1.4.4)是一类广泛存在于各种生物体的酶,具有水解作用和磷酰基转移作用(见图1)。作为一种酶制剂,PLD的转磷脂酰活性尤为重要,被用于制备具有生物活性的稀有磷脂。其中,以大豆磷脂酰胆碱(PC)为底物,PLD酶法制备磷脂酰丝氨酸(PS),受到广泛关注。PS作为脑健康营养补充剂,相继被美国FDA、日本HBM和中国国家卫生计生委所认证,列为新资源食品。相较于提取自牛脑和植物的PS,生物酶法制备的PS,避免了食品安全和植物源含量低的问题。进一步,一些新的结构和功能磷脂,通过PLD转磷脂酰反应被合成出来,例如,磷脂酰鲨肝醇、磷脂酰葡萄糖、心磷脂类似物、磷脂酰酪醇、磷脂酰萜烯和磷脂酰丝氨醇,它们中一些具有抗癌和抗氧化活性。 直到现在,受限于磷脂酶D来源不足和价格高(链霉菌属PLD,≥150 units/mg,6516.9¥/1000 U,Sigma公司),其工业上的广泛应用受到限制。例如,文献报道的PLD最高产量在104-105U·L-1,而制备转化得到每公斤PS,需要2.6×106U的PLD。这一障碍的主要原因是高水平表达的PLD对宿主的严重细胞毒性,导致细胞死亡。 历经5年时间,从上游到下游整体设计,我们解决了毒性蛋白(磷脂酶D,PLD)异源表达难的问题(质粒不稳定、蛋白合成时间短、细胞生长抑制和裂解),PLD生产达到目前世界最高水平106U·L-1(748 mg·L-1)(提高20倍);同时发展一种简单有效提取重组磷脂酶D的方法(无需破碎、无需添加溶菌酶和有机溶剂、室温进行),PLD生产成本有望降低20倍以上。按照实验室规模的一台5 L发酵罐,年产量可以提供3.5×108U的磷脂酶D,满足100 kg的PS转化需求计算(不计算PLD重复利用率),扩大反应器体积至100-1000 L,PLD产量可满足制备2-20吨PS的需求。
厦门大学 2021-01-12
固定化磷脂酶A1在制备磷脂DHA中的应用
本发明提供了一种固定化磷脂酶A1在制备磷脂DHA中的应用,具体过程为,六水硝酸钴和2‑甲基咪唑分别溶于无水甲醇得到六水硝酸钴溶液和2‑甲基咪唑溶液,将2‑甲基咪唑溶液滴加至六水硝酸钴溶液中,搅拌反应、静置、干燥,得到ZIF‑67纳米材料,将ZIF‑67纳米材料于磷酸钠缓冲液中混悬,加入磷脂酶A1溶液,调节pH,置于摇床孵育,离心、干燥,获得ZIF‑67纳米材料固定化磷脂酶A1;将游离脂肪酸和大豆卵磷脂组成的底物和固定化磷脂酶A1在有机反应体系中进行催化反应,分离纯化获得磷脂DHA。固定化磷脂酶A1,稳定性好,催化制备磷脂DHA,DHA掺入率高达51.04%。
南京工业大学 2021-01-12
纳米晶氮碳化钛陶瓷超细粉的高温碳氮化制备法
一种纳米晶氮碳化钛陶瓷超细粉的高温碳氮化反应制备法,以纳米氧化钛和纳米碳黑为原料,工艺步骤依次为配料、混料、干燥、装料、高温碳氮化、球磨、过筛。此法工艺简单,成本较低,较一般碳热还原法节约能源,容易实现规模化工业生产。通过控制反应温度、保温时间、氮气压力(或流量)、碳钛配比等工艺因素可以合成各种氮含量的氮碳化钛纳米晶超细粉。用此法制备的氮碳化钛粉末为球形,分散性较好,平均粒度为100~200NM,平均晶粒度为20~50NM,纯度达99%以上。
四川大学 2021-04-11
关于单层FeSe/SrTiO3高温超导机理的研究系列进展
北京大学量子材料中心王健研究组与合作者在钛酸锶(SrTiO3)衬底上外延生长的单原胞层厚(0.55 nm)铁硒(FeSe)薄膜中观测到了具有磁激发迹象的玻色模式和强非磁性杂质诱导的准粒子束缚态。两项发现为超导机制备受争议的单原胞层铁硒薄膜提供了异号配对的重要实验证据,表明在该体系中尽管界面电–声耦合被认为可以增强超导特性,自旋涨落对于库珀对的配对有着不可忽略的作用,或对铁基高温超导机理的统一理解提供重要参考。 提升超导转变温度和理解库珀配对机制是超导领域两个最重要的研究方向。在以往的铁基超导研究中,基于电子–空穴费米口袋嵌套的s±波配对被广泛接受。然而对于AxFe2−ySe2 (A = K, Rb, Cs, Tl)、(Li1−xFex)OHFe1−ySe,尤其是单原胞层 FeSe/SrTiO3等一系列重电子掺杂铁硒化合物,重电子掺杂会导致费米能级上移,进而导致布里渊区中心Γ点的空穴费米口袋降至费米能级以下,使得电子–空穴费米口袋嵌套理论失效。因而,铁基超导中的s±配对图像受到严峻挑战。 钛酸锶衬底上外延生长的铁硒薄膜具有铁基超导家族最简单的分子结构和最高的超导转变温度(能隙闭合温度的典型值为65 K),自2012年被清华大学薛其坤团队发现以来在国际凝聚态物理领域掀起了研究热潮。前期,北京大学王健研究组与薛其坤研究组合作采用电输运和抗磁性测量首次报道了单层铁硒中高温超导的直接证据(Chin. Phys. Lett. 31, 017401 (2014),被Science编辑选择文章Science 343, 230 (2014)报道)。然而,其中的超导配对机制,一直存在争议,始终悬而未决。 为了揭示单层铁硒中的超导配对机制,王健研究组开展了一系列系统的实验。实验中的单层铁硒超薄膜采用分子束外延技术生长于钛酸锶衬底。通过原位超高真空(~10−10 mbar)原位扫描隧道谱探测,研究组发现超导能隙外存在由电子–玻色子耦合导致的鼓包(hump)结构。系统的扫描隧道谱实验揭示以该鼓包为特征的玻色模式更接近磁激发信号(图1),极有可能是充当配对媒介、且连接布里渊区近邻角落(M点)电子费米口袋的(π,π)自旋涨落。超导序参量作为复数,其在费米面上的分布存在同相位(保号:sign-preserving)与反相位(异号:sign-reversing)两种情形。杂质散射作为一种相位敏感技术,已广泛应用于以往超导配对研究。其中非磁性杂质尤为特殊,其选择性地局域破坏s±波、d波等异号配对,实验上表现为诱导超导能隙内的束缚态,而对传统保号s波配对无明显效应,因此可用于区分异号和保号配对图像。王健研究组采用沉积于单层铁硒表面的强非磁性杂质铅(Pb)吸附原子作为散射中心,实验中发现相对于正常超导谱形,铅原子在超导带隙边界附近诱导出电子型谱权重增强,同时超导能隙减弱(图2)。该特征是‘隐’束缚态的典型信号。系统的势散射强度调节(图2(d))等实验也印证了这一观点,有力地说明单层铁硒超导能隙函数存在异号。同时,基于异号配对图像,如扩展s±波(图2(e)),南京大学王强华教授与南京师范大学高绎教授理论上定性复现了非磁性杂质诱导的超导谱形重构。上述的玻色模式与非磁杂质散射两项研究成果一致支持单层铁硒中存在以自旋涨落为媒介的异号配对,为最终澄清单层铁硒的界面高温超导机制奠定了重要基础,同时也预示具有不同费米面构型的铁基高温超导体或存在统一解释。图1. 单原胞层 FeSe中具有磁激发迹象的玻色模式。(a) 单原胞层 FeSe的扫描隧穿谱,显示超导能隙外由电子–玻色子耦合导致的鼓包结构;(b) Ω/2Δ1与Δ1的统计负关联(Ω:玻色模式能量;Δ1:内超导能隙)。图2. 单原胞层 FeSe中强非磁性杂质诱导的准粒子束缚态。(a) Pb吸附原子的STM形貌图;(b) Pb吸附原子和正常单原胞层 FeSe的扫描隧穿谱,显示9.5 mV处存在‘隐’束缚态;(c) 跨Pb吸附原子的扫描隧穿线谱;(d) 101组Pb吸附原子扫描隧穿谱(黑实线下方)与无吸附原子时的扫描隧穿谱(黑实线上方)对比;(c) 扩展s±波图像下非磁性杂质的模拟局域态密度谱。 两项工作分别于2019年5月22日和2019年7月15日发表于Nano Letters(Nano Lett. 19, 3464−3472 (2019))、Physical Review Letters(Phys. Rev. Lett. 123, 036801 (2019))。论文链接:https://pubs.acs.org/doi/10.1021/acs.nanolett.9b00144、https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.123.036801。 其中Nano Letters文章北京大学博士生刘超飞为第一作者,北京大学王健教授为通讯作者;Physical Review Letters文章,北京大学博士生刘超飞、王子乔和南京师范大学高绎教授为共同第一作者,北京大学王健教授和南京大学王强华教授为共同通讯作者。 以上工作得到了国家自然科学基金、国家重点研发计划、量子物质科学协同创新中心、中科院卓越创新中心、北京市自然科学基金、江苏省自然科学基金等经费的支持。王健特别感谢谢心澄、王垡、徐莉梅、任泽峰以及量子物质科学协同创新中心在北大超高真空分子束外延与低温扫描隧道显微镜实验室搭建过程中给予的支持。
北京大学 2021-04-11
大型乙烯生产装置高温裂解炉结焦抑制技术及应用
我国乙烯装置的平均综合能耗比国际先进水平高出27%。裂解炉是乙烯生产的核心设备,其能耗占到整个乙烯装置能耗的50-60%。裂解反应炉管的结焦导致装置能耗增大、乙烯产量下降、炉管寿命大大缩短。本项目在上海市科委、市教委等科研项目的支持下,实现了大型乙烯裂解炉高温裂解结焦抑制技术的工业化应用及推广,填补了国内空白,整体技术水平达到国际先进。 项目创新性地提出了采用陶瓷梯度涂层来抑制裂解炉管内壁结焦、渗碳、氧化的新技术。发明了内表面带有特殊陶瓷层及复合氧化物纳米薄膜扩散障的裂解反应炉管制造技术,开发了工业化成套制造设备及陶瓷复合炉管的焊接技术。发明了可在裂解炉使用现场重复实施的抑制结焦在线预膜技术。自主设计、搭建了国内最大规模的高温裂解结焦抑制技术中试放大及抑制结焦效果评价系统。开发了适合在大型裂解炉高速紊流、管内复杂表面状态下在线制备陶瓷复合预膜层的工艺。优化了结焦抑制剂的添加工艺。实现了上述高温裂解结焦抑制技术的工业化应用及推广。 结焦抑制技术在大型乙烯裂解炉上的成功应用,解决了制约乙烯生产的瓶颈问题,实现了乙烯装置的长周期、高效、安全可靠运行,且可大幅度提升我国乙烯生产的技术水平。可推广应用于所有新建和在役乙烯装置、催化、焦化等石化装置、煤制油等煤化工装置等。 近 年累计为企业创造经济效益约6亿元。
华东理工大学 2021-02-01
一种钢管混凝土柱高温下加载实验测试装置
本实用新型公开了一种钢管混凝土柱高温下加载实验测试装置,涉及钢管混凝土柱抗火试验技术领域,包括压力千斤顶、压力传感器、反力架、激光测距仪和温度传感器等,所述反力架安装在地面上,若干压力千斤顶安装在反力架上,压力千斤顶的前端安装有压力传感器和钨钢连接杆;通过激光测距仪在火灾实验炉外来测试试验钢管混凝土柱的变形位移值,有效的避免了该加载测试装置直接受高温的影响,利用测得的位移值,可以方便地计算高温下钢管混凝土柱破坏时的应力值。
安徽建筑大学 2021-01-12
自由式高温受压构件承载试验喷水冷却系统
本发明涉及一种自由式高温受压构件承载试验喷水冷却系统,包括设置在受压构件周围的金属支架,金属支架上设置有下紧固圆环,受压构件设置在下紧固圆环中心位置处,下紧固圆环的环面水平且间隔设置有多个自由摇臂组件,自由摇臂组件的悬伸端设置有冷却水喷嘴,冷却水喷嘴的喷水头与受压构件之间的间距可调,冷却水喷嘴的指向下紧固圆环的环面中心且斜向向上,本发明既可以用于冷却高温圆柱形受压构件,也可以用于冷却高温方形受压构件,冷却水沿垂直壁面分布均匀,冷却效果较好;利用自由摇臂组件来控制冷却水喷嘴与受压构件之间的相对位置,操
安徽建筑大学 2021-01-12
基于绝热燃烧条件的生物质微米燃料高温清洁燃烧方法
本发明公开了一种基于绝热燃烧条件的生物质微米燃料高温清洁燃烧方法,包括:(a)将生物质微米燃料以全密封的形式予以灌装装卸和运输,并管路输送至工业窑炉;(b)将生物质微米燃料与空气进行预混以形成粉尘云的流态形式;(c)将预混后的流态粉尘云向经由燃料喷管喷入设置在窑炉中的绝热燃烧室,由此在此相对封闭的储热空间将能量密度相对低的生物质燃料的能量聚积在其中,并执行超高温燃烧;(d)在燃烧过程中,向绝热燃烧室补水蒸汽。通过本发明,能够获得高达 1500℃以上的燃烧温度,满足多种工业或民用窑炉的加热要求,同时与
华中科技大学 2021-04-14
首页 上一页 1 2
  • ...
  • 29 30 31
  • ...
  • 48 49 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    64届高博会于2026年5月在南昌举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1