高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
聚合物基电子封装材料用高性能助剂的制备技术
随着电子封装技术向着“高密度、薄型化、高集成度”不断发展,对聚合物基电子封装材料的各项性能提出了更高要求。目前,我国在先进电子封装材料的研究和应用上与日本、韩国及欧美发达国家相比仍有较大差距。团队通过与无锡创达新材料股份有限公司、无锡东润电子材料科技有限公司等企业开展产学研合作,研发了一系列具备自主知识产权、高附加值以及高性能的电子封装材料用关键助剂,包括环氧树脂增韧剂、环氧树脂固化促进剂、高性能有机硅树脂等,并获得江苏省相关科技计划项目及人才项目的立项支持。相关功能助剂的应用可有效提升电子封装材料的性能,对突破国内高档电子封装材料研发生产的技术瓶颈,提升我国微电子封装产业的国际竞争力,具有积极作用。
江南大学 2021-04-13
聚合物基电子封装材料用高性能助剂的制备技术
随着电子封装技术向着“高密度、薄型化、高集成度”不断发展,对聚合物基电子封装材料的各项性能提出了更高要求。目前,我国在先进电子封装材料的研究和应用上与日本、韩国及欧美发达国家相比仍有较大差距。团队通过与无锡创达新材料股份有限公司、无锡东润电子材料科技有限公司等企业开展产学研合作,研发了一系列具备自主知识产权、高附加值以及高性能的电子封装材料用关键助剂,包括环氧树脂增韧剂、环氧树脂固化促进剂、高性能有机硅树脂等,并获得江苏省相关科技计划项目及人才项目的立项支持。相关功能助剂的应用可有效提升电子封装材料的性能,对突破国内高档电子封装材料研发生产的技术瓶颈,提升我国微电子封装产业的国际竞争力,具有积极作用。 
江南大学 2021-04-13
天津市基理科技股份有限公司
天津市基理科技股份有限公司(简称“基理科技”)于2008年创立,作为国内领先的科研服务平台提供商,始终致力于成为客户业务创新、信息化转型过程中值得托付与信赖的合作伙伴。 基理科技深耕科研行业十余年,以信息化技术为核心、以人工智能为载体、以大数据为动力、以行业应用场景建设为路径,聚焦用户核心需求,向用户提供场景化解决方案,支持高等院校、医疗机构、科研院所、科研企业在内的实验室管理信息化转型实践。目前已为全国超过400余家高校及科研院所,80万余名用户提供产品及解决方案。 基理科技高度重视自主创新,在北京、上海、苏州等地均设有研发中心,拥有“国家高新技术企业”、“双软认定企业”等资质。多年来在大数据、物联网等领域获得了多项专利及软件著作权。 面向未来,基理科技将与广大用户与合作伙伴携手,共同创造更加高效、舒适的科研环境。积极践行“让科研更简单、更安全”的企业愿景,为推动国内实验室信息化建设贡献力量!
天津市基理科技股份有限公司 2021-12-07
聚丙烯酸酯原位聚合具有互穿网络结构的 聚氯乙烯复合树脂
1.项目开发的背景聚氯乙烯树脂(PVC)是五大通用塑料中仅次于聚乙烯的第二大品种,在我国,其产能和产量均居世界第一,它已普遍应用于建筑、化工、电器仪表、日用品等各种领域。由于其综合性能好、价格低廉、用途广泛,在国民经济中有着重要的地位,但在加工应用中存在冲击强度低,耐热性和耐候性差等缺点。通常采用接枝共聚,共混等方法向PVC中添加高分子弹性体,使共混体系既可保持硬质PVC高模量,高刚性的特点,又可大大提高其缺口冲击强度,明显改善其低温冲击性能,开发高抗冲击耐热与耐候性优良的特种专用PVC一直是国内外研发的重点。聚丙烯酸酯原位聚合具有互穿网络结构的聚氯乙烯复合树脂是针对PVC树脂的缺口冲击强度低,共混改性时改性剂分散不均,易分相渗出,改性效率低而开发的高抗冲改性PVC专用树脂,其实质仍是橡胶增韧PVC树脂。它是以核-壳结构的聚丙烯酸酯弹性体为基质,与VC单体进行原位聚合后形成具有互穿网络结构的改性聚氯乙烯树脂。一般通过聚丙烯酸酯胶乳或聚丙烯酸酯粉粒存在下的VC水相悬浮或乳液聚合而制得。采用纳米级核-壳胶乳粒子原位聚合氯乙烯进行微观结构改性是聚氯乙烯树脂改性的第三代增韧技术,其优点在于改善宏观混合的不均匀性,质量良莠不齐,以及对共混加工条件依赖性强、加工工艺和配方复杂、增韧效率低、耐候性差等局限性,同时解决纯粹接枝共聚物大分子链流动性差、所制材料模量低,制品抗冲性能和刚性模量等不能同时兼顾的弊端。2、工业化放大生产2011年3月我校与河北盛华化工有限公司合作,自筹经费,进行了悬浮法聚丙烯酸酯原位聚合具有互穿网络结构的聚氯乙烯复合树脂的中试,并进行了大量中试试验研究。其研究工艺分三步,一是丙烯酸种子乳液的合成。二是悬浮法聚丙烯酸酯原位聚合具有互穿网络结构的聚氯乙烯复合树脂合成,三是复合树脂高速离心脱水,干燥。工业化试验之前共进行17批次种子乳液聚合,70批次原位悬浮聚合,并连续稳定生产50批。至2011年9月已成功完成聚丙烯酸酯原位聚合具有互穿网络结构的聚氯乙烯复合树脂中试试验,为进一步工业化放大生产试验奠定了坚实的基础。中试试验过程中解决了以下几个关键技术问题:(1)聚丙烯酸酯原位聚合具有互穿网络结构的聚氯乙烯复合树脂在加工后出现黑点问题;(2)冲击强度不高的问题;(3)颗粒形态问题;(4)分散体系与乳液体系共稳定性问题。2011年9月底实现13.5m3工业化装置试运行生产,至2011年12月完成工业化生产用种子乳液聚合40余批,原位聚合及干燥30余批,经过配方和工艺的进一步改进,共生产各项性能合格的聚丙烯酸酯原位聚合具有互穿网络结构的聚氯乙烯复合树脂60余吨,产品性能与技术经济指标完全达到了项目预期目标。3.本项目的技术成果与产品应用聚丙烯酸酯原位聚合具有互穿网络结构的聚氯乙烯复合树脂在河北盛华化工有限公司成功实现工业化,填补了国内聚丙烯酸酯原位聚合具有互穿网络结构的聚氯乙烯复合树脂产品的空白,增加了我国PVC新品种,对推动我国PVC市场从通用型转变到特种专用型有着及其重要的作用,同时对我国高品质硬质PVC制品的发展具有积极的推动作用。该产品集抗冲、耐磨、耐老化、耐腐蚀、阻燃、绝缘性好等优异性能于一身,抗冲击性能尤其突出,其技术性能指标已达到并超过同等ACR含量下美国Rohm & Hass公司KM-355P改性PVC树脂的水平,作为高抗冲PVC-M管道专用料应用前景十分广阔。该产品的不断推广应用,将进一步促进管道工业、高品质建材行业和其它塑料制造业的发展,经济效益和社会效益明显。聚丙烯酸酯原位聚合具有互穿网络结构的聚氯乙烯复合树脂成功实现工业化预示了国内PVC产品市场转变的一个良好开端,它将逐步推动我国PVC树脂产品向系列化、专业化的水平,相信经过几年或十几年时间的发展,我国的PVC树脂牌号就会像产能一样形成规模,改变目前以生产大批量的通用树脂为主,而许多PVC下游加工企业所需的PVC专用树脂主要依赖进口的不良局面,简化了加工工艺配方和过程,节约了能源消耗。本项目成功工业化产品有很多优点:  (1)在传统PVC悬浮树脂生产设备基础上,引入聚丙烯酸酯乳液,与VC单体进行原位悬浮聚合,形成了聚丙烯酸酯与PVC两相之间稳定的互穿网络结构,大幅度提高了聚氯乙烯的力学性能,为生产高品质的管材等高端产品奠定了材料结构基础;互穿网络结构材料微观结构的均匀性显著改善了新型复合树脂的缺口冲击韧性。同时,使用该专用树脂生产制品时无需添加其他增韧剂,与传统ACR或等效CPE共混改性PVC相比,原材料成本有所降低,简化了工艺流程,节约了能耗;(2)通过配方和工艺的调整,解决了聚丙烯酸酯乳液在悬浮聚合体系中分散的均匀性问题,实现连续工业化试生产,复合树脂质量稳定。同时建立了新型复合树脂的产品企业标准。(3)该复合树脂耐候性好,加工塑化时间短,不存在CPE-g-VC树脂加工时黄色指数变化明显的缺点,也不像EVA-g-VC树脂那样对加工温度敏感,使得PVC的加工性能得到改善;(4)该项目的成功实施为乳液与悬浮两大聚合方法之间协同关系找到了规律性认识,这对其它类似体系共聚物的制备研究具有积极的理论指导意义。公司质管处对产品粘数、热老化白度、筛余物、水份、鱼眼等指标进行了检测,作为高抗冲击专用料先后经过河北省分析测试研究中心、河北省氯碱工程技术研究中心检测分析,其常温简支梁冲击强度大于30.0kJ/m2,-10℃时为大于8.0kJ/m2,比普通PVC制品高10倍。我们研制的聚丙烯酸酯原位聚合具有互穿网络结构的聚氯乙烯复合树脂经过张家口市盛华伟业管业有限公司,张家口市方盛塑业有限公司和河北汇泰塑业有限公司作为高抗冲专用料用于制作管材和板材制品性能均能达到并超过国家建材行业指标要求,而且产品流动性好、不需添加任何增韧剂和加工助剂,可大幅度降低了生产成本,减少了环境污染,经济和社会效益显著。其中所生产的各规格管材按CT/T272-2008标准检测后,密度、二氯甲烷、落锤、维卡、回缩、液压六项指标全部合格。经过多家大型PVC加工企业的检测和应用试验为该产品市场定位和开拓应用新领域打下了坚实的基础。聚丙烯酸酯原位聚合具有互穿网络结构的聚氯乙烯复合树脂首先是作为高抗冲PVC-M管道专用料使用,另外还可用于其它方向的管道工业、高品质建材行业、汽车工业,以及电器仪表和工程塑料等应用领域。
河北工业大学 2021-04-13
聚焦二十大丨实施科教兴国战略 筑牢国家强盛之基
习近平总书记在党的二十大报告中鲜明提出,要实施科教兴国战略,强化现代化建设人才支撑。连日来,会场内外的广大科技和教育工作者热议报告,表示要用自己的实际行动筑牢国家强盛之基,为全面建设社会主义现代化国家而不懈奋斗。
央视新闻 2022-10-20
MSER:聚合物基三维连续网络的导热复合材料
伴随着5G、大数据、人工智能、物联网、工业4.0、国家重大战略需求等领域的技术发展,电子器件正朝着高功率、高集成化和便携式的方向发展,这亟需高效、轻质和高稳定性的热管理材料和方案来保证电子产品的效率、可靠性、安全性、耐用性和持续稳定性。如何大幅提高导热材料的热导率一直是热管理材料行业的技术痛点,也是促进消费电子、5G设备、高功率芯片、集成电路、电池等突破功率限制的关键。由于传统导热材料如金属、无机导热材料存在质量大、柔性差等缺点,导热聚合物的应用正在不断向高导热材料领域渗透。聚合物导热材料在成本、可加工性、柔韧性及稳定性等方面更有优势。但绝大多数的聚合物自身的导热性很差(一般导热系数为0.2 ~ 0.5 W/mK),无法满足高导热的需求,开发高导热的聚合物复合材料已经成为该领域的一个研究热点。采用复合高导热填料(如石墨烯、碳纳米管、氮化硼、金属氧化物等)是一种简单而高效的方式来提高聚合物基体的热导率,目前在工业生产已经有了广泛的应用。现有的大量研究表明,在聚合物材料内部构建导热网络可以在低添加量的条件下实现热导率的大幅度提高,这种三维渗流网络(如图1所示)可以为声子的快速传递提供通道,从而加速热量沿着三维网络进行传递。 封伟团队在综述中重点介绍了不同三维导热网络的构建及在制备聚合物导热复合材料方面的最新进展,如石墨烯三维网络、碳纳米管网络、氮化硼网络、金属三维导热网络等。讨论了不同导热材料三维网络的构建方法、结构取向调控方法及影响导热性能的关键因素(取向性、界面连接性、网络密度等)。同时,比较了不同的填料形式(分散颗粒填料与三维连续填料网络)对复合材料热导率的影响。相比于共混法制备的导热复合材料,基于三维填料网络的复合材料在填充比、分散性、取向控制及热导率提升率上都具有明显的优势。毫无疑问,三维连续导热网络的形成对于提升聚合物热导率至关重要。可以预见,三维导热填料网络的设计将作为一种实现聚合物高导热率的重要手段,成为新一代热管理系统的研究热点。 极端环境热管理系统在能源化工、通讯卫星、高速飞行器及人工智能等领域都发挥重要作用。导热复合材料作为热管理系统的关键材料,直接影响着其在不同环境内的热传导方向和效率。近年来,天津大学封伟教授团队以高导热碳复合材料为研究基础,针对其存在的导热各向异性、易损伤、压缩回弹性差以及与高弹性难以兼顾的问题,提出了通过微观结构设计、界面优化、分子级相互作用优化,分别实现复合材料的定向高导热、弹性高导热及自修复高导热,探索其在复杂界面和极端环境热传导领域的应用。
天津大学 2021-02-01
高密度铁基粉末冶金制品制备关键技术研究
针对我国高品质粉末冶金铁基材料制备技术较薄弱的问题,在高品质铁基粉末和高性能铁基制品制备技术方面取得了突破。以 LAP100.29 水雾化铁粉作为高密度低合金粉末基粉,添加母合金粉末、增塑剂经塑化处理后,再添加专用润滑剂和石墨进行混合。首先将水雾化铁粉及合金粉末进行粒度搭配,提高堆积密度;然后通过粉末结化处理,提高混合粉末的流动性、合金成分均匀性;接着通过粉末塑化处理,改善铁粉颗粒整体塑性,从而获得了具有高压缩性的专用高密度成形粉末(图 7)。合批粉末的松比为 3.2~3.4g/cm3,流动性≤30s/50g,压缩性≥7.6g/cm3,粉末显微组织如图 2 所示。在混粉阶段,设计制作了 5 吨/h 专用连续式混合装置(如图 6 所示),通过软化处理的复合粉末及粘结剂、石墨等的定量供给和高效混合,合批制成高密度专用粉末,从而实现粘结化粉末的连续、稳定的批量化生产。
北京科技大学 2021-02-01
一种氢化铝锂基复合储氢材料及其制备方法
简介:本发明公开了一种氢化铝锂基复合储氢材料及其制备方法,属于储氢材料技术领域。该复合储氢材料是由氢化铝锂(或氢化铝锂与硼氢化锂的混合物)和20~30wt.%的工业固体废弃物(如粉煤灰或高炉矿渣粉)组成;其通过机械球磨氢化铝锂(或氢化铝锂与硼氢化锂的混合物)和工业固体废弃物混合粉末而获得。本发明利用工业固体废弃物来改善材料的储氢性能,原料来源广、成本低廉;所提供的氢化铝锂基复合储氢材料制备工艺简单,安全可靠,具有低的放氢温度和高的放氢量。
安徽工业大学 2021-04-11
对于铁基超导材料Sr1-xNaxFe2As2超导机制的研究
当今凝聚态物理研究中最重要的问题之一是揭示磁性材料中的高温超导机制。带有自旋的电子常被认为是局域在磁性离子实周围的,而形成电流的电子则被视为在晶格中巡游。但事实上这两者均为同一粒子。因此,这对立的两面如何共同协助超导形成,是一个非常有趣的问题。这种“非常规”的机制与铜基超导体、铁基超导体以及重费米子超导体都密切相关。 在具有多个电子轨道的体系,例如铁基超导材料中,电子自旋和轨道自由度的相互作用使得这个问题更为复杂。李源研究员与合作者之前的研究报道已经揭示了自旋-轨道耦合对材料的磁性性质有非常重要的影响。他们的实验同时还表明铁基超导材料中的磁性具有巡游与局域的双重特性。这并不是一个完全意外的结果,因为已有的一些理论研究也说明铁基超导体可以被所谓“洪德金属”的模型描述。不过自旋-轨道耦合以怎样的方式影响铁基材料中的超导机理,依然是一个未知的问题。Figure 1. (a-c) Imaginary part of dynamic spin susceptibility measured at different temperatures. (d) Imaginary part of dynamic spin susceptibility integrated over 4-8 meV based on the data in (a) and (b). 现在,李源研究组及合作者采用基于飞行时间原理的中子散射谱学技术,发现在一种铁基超导材料中,有一类特定的磁激发对超导的形成至关重要,其作用机理与材料中的自旋-轨道耦合效应密切相关。这项工作于2019年1月4日发表在《物理评论快报》上。 这项研究针对的是近年来发现的空穴掺杂的“122”体系铁基超导材料中新奇四重对称性磁相。在传统的二重对称性磁相中,电子自旋指向在晶体的ab面内,而在这种新发现的磁相中电子的自旋指向沿晶体的c方向。有这种四重对称性磁相的晶体中超导温度也被压制。该项研究旨在探索超导的压制与四方磁相中探测到的谱学特征的联系。基于这一目的,研究组瞄准了Sr1-xNaxFe2As2这一种有鲁棒性的四方磁相,且较易制备大单晶的铁基超导材料。Figure 2. (a-b) Constant-Q cuts measured at (0.5, 0.5, 1) and (0.5, 0.5, 3), with background subtracted. (c-d) Intensity difference between 6 K and 20 K at L = 1 and 3. 实验发现,在材料发生从二重对称性(图1a, T = 80 K)转化为四重对称性(图1b, T = 20 K)的相变后,低能的自旋激发发生了显著的变化。根据中子散射截面与散射几何的关系,在L = 1处测量到的信号中c方向的磁激发有更大的比重,而在L = 3处则可探测到更多的ab面内的磁激发。图1d显示,当温度从80 K降到20 K后,由于自旋的方向发生偏转到了c方向,在低能激发中将难以沿c方向时自旋的长短发生改变,因此低能磁激发中c方向的自旋激发被抑制。实验还发现了重要的一点:超导相(图1c, T = 6 K)的自旋激发相对非超导相的自旋激发有轻微的改变,这说明材料超导与的磁性质相关联。进一步的分析(图2)发现,这种改变主要发生在L = 1的位置,这说明在四重对称性磁相中,尽管c方向的磁激发被抑制,但它们仍然是与超导关系最密切的磁激发。这项结果揭示了在多轨道序洪德金属中实现高温超导的一个“兼容性”要求:局域的磁矩必须能够为巡游电子提供后者在实现超导配对过程中所需的磁激发。由于在四重对称性磁相中,该要求恰好不被满足,所以超导温度被抑制。 量子材料科学中心博士研究生郭见青和岳莉为该项工作的共同第一作者。相关的中子散射实验是由日本的MLF, J-Parc用户实验项目支持完成的。这项工作由量子材料科学中心李源研究组和张焱研究组合作完成。研究课题得到了中国自然科学基金委和科技部项目的资助。References:[1] C. Wang et al., Phys. Rev. X 3, 041036 (2013).[2] M. Ma et al., Phys. Rev. X 7, 021025 (2017).[3] Z.P. Yin et al., Nat. Mater. 10, 932 (2011).[4] J. Guo, L. Yue et al., Phys. Rev. Lett. 122, 017001 (2019).
北京大学 2021-04-11
对于铁基超导材料Sr1-xNaxFe2As2超导机制的研究
在具有多个电子轨道的体系,例如铁基超导材料中,电子自旋和轨道自由度的相互作用使得这个问题更为复杂。李源研究员与合作者之前的研究报道已经揭示了自旋-轨道耦合对材料的磁性性质有非常重要的影响。他们的实验同时还表明铁基超导材料中的磁性具有巡游与局域的双重特性。这并不是一个完全意外的结果,因为已有的一些理论研究也说明铁基超导体可以被所谓“洪德金属”的模型描述。不过自旋-轨道耦合以怎样的方式影响铁基材料中的超导机理,依然是一个未知的问题。Figure 1. (a-c) Imaginary part of dynamic spin susceptibility measured at different temperatures. (d) Imaginary part of dynamic spin susceptibility integrated over 4-8 meV based on the data in (a) and (b). 现在,李源研究组及合作者采用基于飞行时间原理的中子散射谱学技术,发现在一种铁基超导材料中,有一类特定的磁激发对超导的形成至关重要,其作用机理与材料中的自旋-轨道耦合效应密切相关。这项工作于2019年1月4日发表在《物理评论快报》上。 这项研究针对的是近年来发现的空穴掺杂的“122”体系铁基超导材料中新奇四重对称性磁相。在传统的二重对称性磁相中,电子自旋指向在晶体的ab面内,而在这种新发现的磁相中电子的自旋指向沿晶体的c方向。有这种四重对称性磁相的晶体中超导温度也被压制。该项研究旨在探索超导的压制与四方磁相中探测到的谱学特征的联系。基于这一目的,研究组瞄准了Sr1-xNaxFe2As2这一种有鲁棒性的四方磁相,且较易制备大单晶的铁基超导材料。Figure 2. (a-b) Constant-Q cuts measured at (0.5, 0.5, 1) and (0.5, 0.5, 3), with background subtracted. (c-d) Intensity difference between 6 K and 20 K at L = 1 and 3. 实验发现,在材料发生从二重对称性(图1a, T = 80 K)转化为四重对称性(图1b, T = 20 K)的相变后,低能的自旋激发发生了显著的变化。根据中子散射截面与散射几何的关系,在L = 1处测量到的信号中c方向的磁激发有更大的比重,而在L = 3处则可探测到更多的ab面内的磁激发。图1d显示,当温度从80 K降到20 K后,由于自旋的方向发生偏转到了c方向,在低能激发中将难以沿c方向时自旋的长短发生改变,因此低能磁激发中c方向的自旋激发被抑制。实验还发现了重要的一点:超导相(图1c, T = 6 K)的自旋激发相对非超导相的自旋激发有轻微的改变,这说明材料超导与的磁性质相关联。进一步的分析(图2)发现,这种改变主要发生在L = 1的位置,这说明在四重对称性磁相中,尽管c方向的磁激发被抑制,但它们仍然是与超导关系最密切的磁激发。这项结果揭示了在多轨道序洪德金属中实现高温超导的一个“兼容性”要求:局域的磁矩必须能够为巡游电子提供后者在实现超导配对过程中所需的磁激发。由于在四重对称性磁相中,该要求恰好不被满足,所以超导温度被抑制。
北京大学 2021-04-11
首页 上一页 1 2
  • ...
  • 49 50 51
  • ...
  • 68 69 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    64届高博会于2026年5月在南昌举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1