高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
纳米银表面改性聚氨酯中心静脉导管及其制备方法
鉴于医用导管在临床应用或储存中容易被细菌污染,带来感染问题;本技术成果对医用聚氨酯中心静 脉导管进行表面改性,赋予导管表面广谱、强效的抗菌性能。基于紫外光辐照化学镀反应,在聚氨酯中心 静脉导管表面原位将银离子还原成纳米银。本技术成果制备的纳米银表面改性聚氨酯中心静脉导管具有较 患者进行放射性口腔黏膜炎发病风险预测,对高危个体提前采取针对性的预防措施,实现个体化治疗,显 强的抗菌和抗感染性能,应用前景广泛。 得尤为重要。
中山大学 2021-04-10
一种黄色聚氨酯丙烯酸酯染料的制备方法
本发明公开了一种黄色聚氨酯丙烯酸酯染料的制备方法,制备含有黄色发色团的黄色丙烯酰胺;通过聚合物二元醇、二异氰酸酯、亲水性扩链剂和含羟基的丙烯酸酯单体合成含羟基的水性阳离子聚氨酯;以含羟基的水性阳离子聚氨酯作为种子乳液,往乳液中加入引发剂、丙烯酸酯类单体和合成的黄色丙烯酰胺染料进行聚合,制得黄色聚氨酯丙烯酸酯染料。本发明制备的黄色聚氨酯丙烯酸酯染料具有优异的耐摩擦、耐迁移、耐候、耐迁移和安全性高特点。在处理带有负电荷的基质如皮革、织物、涂料和胶粘剂和纸张表面时有着很好的应用前景。黄色聚氨酯丙烯酸酯染料
安徽建筑大学 2021-01-12
一种功能性水性聚氨酯皮革涂饰剂及其制备方法
本发明提供了一种功能性水性聚氨酯皮革涂饰剂及其制备方法。本方法首先利用溶剂热法制备了掺杂型、表面PEG化的纳米二氧化钛,然后将其溶于聚合物多元醇中,采用原位聚合法将改性的具有可见光响应的纳米二氧化钛引入到聚氨酯中。该方法制备的水性聚氨酯皮革涂饰剂含有可见光响应的纳米二氧化钛,能够充分利用太阳光中的可见光,杀菌防霉能力强;纳米二氧化钛表面接枝PEG,结合纳米二氧化钛的光催化活性和PEG优良的抗蛋白吸附能力,显著提高聚氨酯涂层自清洁功能;采用原位聚合法可以有效促进纳米二氧化钛在聚氨酯中的良好分散,提高涂层的耐热稳定性和力学强度,同时保持涂饰材料的透明性。
四川大学 2016-10-08
一种聚丙烯改性的聚氨酯海绵及其制备方法与应用
本发明涉及一种用于清除水面浮油的连续吸油器及一种用于上述吸油器的具有超疏水性能的聚丙 烯改性的聚氨酯海绵及其制备方法。本发明的连续吸油器包括吸油材料、真空泵、吸油管、输油管和浮 油接收容器;其中,所采用的吸油材料为具有强疏水亲油性的聚丙烯改性的聚氨酯海绵。该连续吸油器 的原理是:在负压条件下使水面浮油透过高选择性吸油材料后收集到接收器里,而水则不能通过吸油材 料。吸油过程中,只需通过更换浮油接收容器即可实现水面浮油的连续清理。该吸油器特别适用于水面 漏油事故的处理,操作简单方便。
武汉大学 2021-04-14
电供暖智能控制系统
技术成熟度:技术突破 本成套设备,以电供暖的各个电暖气为控制对象,以建筑内不同房间不同区域的取暖温度为控制参数,自下而上,组成了由单片机现场控制器(控制室单独使用PLC控制器)、PLC中间层算法控制器、工控机为上位机构成监控界面的DCS控制系统,从而实现分散控制集中管理的控制系统。此系统的目的在于替换传统水暖系统,利用合理科学的软件算法,实现节能、环保、减排的效果。设备兼具教学、实验、科研及实用的功能。 成果技术特点:本套装置由四个单片机组成现场控制器,一个PLC组成的控制室控制器,与中间层面的S7-300PLC控制系统,以及顶层监控层的工控机装置,统一安装到了一个整体的平台上。此平台便于实地集中实验、研究,也有利于集中编程与项目演示。 图1 设备实物图 图2 为智能控制系统电脑操作界面
吉林建筑科技学院 2025-05-19
人工智能药物筛选、药物设计及毒性预测算法
本成果采用最新的深度学习和分子模拟算法,结合新一代分子特征化方法,开发了多种计算机模型,可用于药物开发中的多个阶段,为药物的快速设计开发提供一个完整的基于人工智能的解决方案。成果:1.药物毒性预测方法:传统的化合物毒性检测技术一般需要使用生化试验、细胞实验、甚至动物模型,这些方法不仅耗费大量时间,而且成本很高。使用计算模型进行有机化合物的毒性预测,所需投入较少,但产出巨大。特别是基于化合物的物理化学和结构特性的计算模型,甚至能够在化合物合成之前就对其进行预测,大大提高了效率,使其越来越受到欢迎。在进行体外和体内试验之前先使用计算机模型对化合物进行大规模的毒性筛选,能够更好地解决候选药物具有毒性的问题。我们建立了一套新的基于多种分子指纹和机器学习算法的化合物毒性预测集成学习算法,运用此集成学习算法建立了新的有机化合物致癌性、致突变性和肝毒性预测模型。我们分别建立了名为CarcinoPred-EL (http://112.126.70.33/toxicity/CarcinoPred-EL/, 致癌性预测)、MutagenPred-EL (http://112.126.70.33/toxicity/MutagenPred-EL/, 致突变性预测)、LiverToxPred-EL (http://112.126.70.33/toxicity/LiverToxPred-EL/, 肝毒性预测)的预测服务器,这些服务器能够为使用者提供更高效更便捷的预测技术服务。自2017年服务器发表起,我们已为国内外药物分子设计研究者提供了5000多次共计超过20多万个化合物的毒性预测服务。在有机化合物毒性预测研究方向,我们主要完成了化合物的细胞毒性、心脏毒性、生殖毒性、血脑屏障透过性、水生生物毒性预测模型,以及糖尿病早期筛查模型的开发,正在进行P450酶阻滞剂性预测模型、基于图神经网络的毒性预测算法研究、基于分子对接的化合物毒性预测研究等。相关研究成果已发表多篇学术论文(Zhang L., et al. Scientific Reports, 2017, 7: 2118. WOS被引次数80,ESI 1%高被引论文;Ai H., et al. Toxicological Sciences, 2018, 165: 100-107;Yin Z., et al. Journal of Applied Toxicology. 2019, 39(10): 1366-1377;Ai H., et al. Ecotoxicology and Environmental Safety. 2019, 179: 71-78;Liu M., et al. Toxicology Letters. 2020, 332: 88-96;Feng H., et al. Toxicology Letters. 2021, 340: 4-14;Li S. et al. Interdisciplinary Sciences: Computational Life Sciences. 2021, 13: 25-33.)致癌性预测服务器首页致癌性预测结果页相关综述对本服务器的介绍RF-hERG-Score预测药物引起的hERG相关心脏毒性2.药物设计方法:在计算机上对药物靶点和药物分子的结构和活性建模,计算药物与靶点之间的相互作用关系,从而设计出具有治疗作用的药物。计算机辅助药物设计可以为药物设计各阶段的实验方案提供有意义的指导,减少需要通过实验评估的候选药物的数量,从而加快新药研发速度。我们应用分子对接、分子动力学模拟、自由能计算、机器学习等方法研究流感病毒等重要疾病的计算机辅助药物设计、并开发更有效的计算机辅助药物设计方法。在计算机辅助药物设计研究我们主要完成了流感病毒M2质子通道蛋白抑制剂虚拟筛选方法研究,正在进行先导化合物生成模型研究、基于机器学习的虚拟筛选打分函数算法开发、SARS-CoV-2病毒S蛋白与受体相互作用及药物设计研究。特异性重打分函数显著虚拟筛选性能显著较高筛选出两个候选抑制剂3.药物靶点识别方法:长非编码RNA(lncRNA)是一种长度在200nt至100,000nt之间的非编码RNA,是转录物的主要成分。研究表明lncRNA在许多生物学和病理学过程中起着重要作用。lncRNA起作用的重要途径是与其靶蛋白结合。lncRNA-蛋白质相互作用的实验研究需要大量资源。累积的实验数据使得通过计算方法预测lncRNA-蛋白质相互作用成为可能。我们使用各种数学建模和机器学习方法开发了几种用于预测lncRNA-蛋白质相互作用的新模型。这些模型命名为:RWLPAP(随机游走),LPI-NRLMF(邻域正则化逻辑矩阵分解),IRWNRLPI(集成随机游走和邻域规则化Logistic矩阵分解),LPI-BNPRA(双向网络投影推荐算法),LPI-ETSLP(基于特征值变换的半监督链路预测),HLPI-Ensemble(集成学习)。在交叉验证中,我们的模型获得了较好的预测性能。lncRNA-蛋白质相互作用预测模型的性能比较lncRNA-蛋白质相互作用预测服务器相关软件著作权:
辽宁大学 2021-04-10
小区垃圾桶智能管理系统及垃圾回收方法
本专利公布了一种垃圾回收系统,包括垃圾桶和垃圾回收车, 垃圾桶底座上安装有骨架,垃圾桶外壳通过转轴和骨架相连,垃圾桶外壳可绕 转轴转动,垃圾桶桶体上设置有托盘系统、翻转装置、垃圾检测装置、垃圾桶 识别装置、垃圾桶站点太阳能发电系统和垃圾桶控制柜;垃圾回收车包括差分 GPS 天线、垃圾回收车控制柜、垃圾识别装置、垃圾桶识别装置,垃圾收集装置、 垃圾回收车托盘系统、路况摄像系统和太阳能发电系统。垃圾桶具有溢满指示 功能,垃圾回收车可实现路面的自动清扫,还可实现与溢满垃圾桶的自动搜寻, 对垃圾桶内垃圾进行自动清理。 应用领域及前景:城市垃圾回收系统通常包括遍布设置于城市中的垃圾桶青岛农业大学科技成果介绍 2017 -70- 和对垃圾桶内垃圾进行回收的垃圾车,垃圾桶用于垃圾暂时的存放,垃圾车再 对垃圾桶内的垃圾进行集中清理。
青岛农业大学 2021-04-11
红外数码智能识别印染织物纠偏对中系统及装置
印染织物电脑对中纠偏系统及其装置,具有布边卷取、展开、扩布和对中控制功能。可连接棉印行业的烧毛机、水洗机、镀层机、丝光机、定型机、平网印花机、圆网印花机以及造纸机、塑料薄膜生产线等机械的入口处。自动对中修正偏斜,减少偏斜式边缘弯曲不正所产生的摺纹式色泽光泽不均现象,提高产品品质,实现生产自动化。 本系统采用微电脑与红外数码技术,将模糊智能识别用于对中纠偏,较模拟电路的对中装置上一档次,属国内首创。该系统具有抗干扰性能强、动作稳定可靠、灵敏度高等优点,不受织物厚薄和幅宽的限制,可自动控制中心位置,可高速运行,是提高印染产品质量的好帮手。本系统还可选配笔记本电脑监控工作状况连接Internet网络。
东华大学 2021-02-01
基于互联网+及数字孪生技术的智能制造转让
高校科技成果尽在科转云
复旦大学 2021-04-10
人工智能药物筛选、药物设计及毒性预测算法
本成果采用最新的深度学习和分子模拟算法,结合新一代分子特征化方法,开发了多种计算机模型,可用于药物开发中的多个阶段,为药物的快速设计开发提供一个完整的基于人工智能的解决方案。 成果:1.药物毒性预测方法:传统的化合物毒性检测技术一般需要使用生化试验、细胞实验、甚至动物模型,这些方法不仅耗费大量时间,而且成本很高。使用计算模型进行有机化合物的毒性预测,所需投入较少,但产出巨大。特别是基于化合物的物理化学和结构特性的计算模型,甚至能够在化合物合成之前就对其进行预测,大大提高了效率,使其越来越受到欢迎。在进行体外和体内试验之前先使用计算机模型对化合物进行大规模的毒性筛选,能够更好地解决候选药物具有毒性的问题。我们建立了一套新的基于多种分子指纹和机器学习算法的化合物毒性预测集成学习算法,运用此集成学习算法建立了新的有机化合物致癌性、致突变性和肝毒性预测模型。我们分别建立了名为CarcinoPred-EL (http://112.126.70.33/toxicity/CarcinoPred-EL/, 致癌性预测)、MutagenPred-EL (http://112.126.70.33/toxicity/MutagenPred-EL/, 致突变性预测)、LiverToxPred-EL (http://112.126.70.33/toxicity/LiverToxPred-EL/, 肝毒性预测)的预测服务器,这些服务器能够为使用者提供更高效更便捷的预测技术服务。自2017年服务器发表起,我们已为国内外药物分子设计研究者提供了5000多次共计超过20多万个化合物的毒性预测服务。在有机化合物毒性预测研究方向,我们主要完成了化合物的细胞毒性、心脏毒性、生殖毒性、血脑屏障透过性、水生生物毒性预测模型,以及糖尿病早期筛查模型的开发,正在进行P450酶阻滞剂性预测模型、基于图神经网络的毒性预测算法研究、基于分子对接的化合物毒性预测研究等。相关研究成果已发表多篇学术论文(Zhang L., et al. Scientific Reports, 2017, 7: 2118. WOS被引次数80,ESI 1%高被引论文;Ai H., et al. Toxicological Sciences, 2018, 165: 100-107;Yin Z., et al. Journal of Applied Toxicology. 2019, 39(10): 1366-1377;Ai H., et al. Ecotoxicology and Environmental Safety. 2019, 179: 71-78;Liu M., et al. Toxicology Letters. 2020, 332: 88-96;Feng H., et al. Toxicology Letters. 2021, 340: 4-14;Li S. et al. Interdisciplinary Sciences: Computational Life Sciences. 2021, 13: 25-33.) 致癌性预测服务器首页 致癌性预测结果页 相关综述对本服务器的介绍 RF-hERG-Score预测药物引起的hERG相关心脏毒性 2.药物设计方法:在计算机上对药物靶点和药物分子的结构和活性建模,计算药物与靶点之间的相互作用关系,从而设计出具有治疗作用的药物。计算机辅助药物设计可以为药物设计各阶段的实验方案提供有意义的指导,减少需要通过实验评估的候选药物的数量,从而加快新药研发速度。我们应用分子对接、分子动力学模拟、自由能计算、机器学习等方法研究流感病毒等重要疾病的计算机辅助药物设计、并开发更有效的计算机辅助药物设计方法。在计算机辅助药物设计研究我们主要完成了流感病毒M2质子通道蛋白抑制剂虚拟筛选方法研究,正在进行先导化合物生成模型研究、基于机器学习的虚拟筛选打分函数算法开发、SARS-CoV-2病毒S蛋白与受体相互作用及药物设计研究。 特异性重打分函数显著虚拟筛选性能显著较高 筛选出两个候选抑制剂 3.药物靶点识别方法:长非编码RNA(lncRNA)是一种长度在200nt至100,000nt之间的非编码RNA,是转录物的主要成分。研究表明lncRNA在许多生物学和病理学过程中起着重要作用。lncRNA起作用的重要途径是与其靶蛋白结合。lncRNA-蛋白质相互作用的实验研究需要大量资源。累积的实验数据使得通过计算方法预测lncRNA-蛋白质相互作用成为可能。我们使用各种数学建模和机器学习方法开发了几种用于预测lncRNA-蛋白质相互作用的新模型。这些模型命名为:RWLPAP(随机游走),LPI-NRLMF(邻域正则化逻辑矩阵分解),IRWNRLPI(集成随机游走和邻域规则化Logistic矩阵分解),LPI-BNPRA(双向网络投影推荐算法),LPI-ETSLP(基于特征值变换的半监督链路预测),HLPI-Ensemble(集成学习)。在交叉验证中,我们的模型获得了较好的预测性能。 lncRNA-蛋白质相互作用预测模型的性能比较 lncRNA-蛋白质相互作用预测服务器相关软件著作权:
辽宁大学 2021-05-10
首页 上一页 1 2
  • ...
  • 13 14 15
  • ...
  • 518 519 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    64届高博会于2026年5月在南昌举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1