高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
赵政阳团队揭示MdBBX22–miR858–MdMYB9/11/12模块调控苹果果皮中原花青素积累的分子机制
近日,PlantBiotechnologyJournal在线发表了园艺学院赵政阳教授团队题为“TheMdBBX22–miR858–MdMYB9/11/12moduleregulatesproanthocyanidinbiosynthesisinapplepeel”的研究论文。
西北农林科技大学 2022-07-11
一种磁性Fe3O4纳米材料嫁接酸性离子液体催化芳胺乙酰化反应的方法
(专利号:ZL 201410181859.7) 简介:本发明公开了一种磁性Fe3O4纳米材料嫁接酸性离子液体(MNPs-IL-HSO4)催化芳胺乙酰化反应的方法,属于有机化学合成领域。该乙酰化反应中芳胺与乙酸酐的摩尔比为1:1~2,MNPs-IL-HSO4催化剂的摩尔量是所用芳胺的10~15%,在室温下反应15~60min,反应后用乙醚稀释,接着用磁铁吸附出滤渣并用乙醚洗涤,收集含有乙酰化产物的滤液,滤渣经真空干燥后可以循环使用。本发明与
安徽工业大学 2021-01-12
用于葡萄糖色比传感的ZnFe2O4纳米颗粒-ZnO纳米纤维复合纳米材料及其制备方法
本发明公开了一种ZnFe2O4纳米颗粒-ZnO纳米纤维复合纳米材料及其制备方法。首先采用共电纺丝方法,沉积得到复合纳米纤维,然后经过适宜的退火工艺制得ZnFe2O4纳米颗粒-ZnO纳米纤维复合纳米材料,ZnFe2O4纳米颗粒均匀稳定的附着在ZnO纳米纤维上。另外,本发明首次将ZnFe2O4纳米颗粒-ZnO纳米纤维复合纳米材料用于葡萄糖色比传感测试,测试方法简单且灵敏度高。ZnFe2O4-ZnO形成II型异质节半导体,交叉的能级结构有利于减小载流子的复合,提高其催化性能、传感性能。另外,将ZnFe2O4纳米颗粒复合到ZnO纳米纤维上解决了颗粒团聚问题,进一步增强了其催化性能与传感性能。
浙江大学 2021-04-11
中山大学测试中心电感耦合等离子体飞行时间质谱仪采购项目公开招标公告
中山大学测试中心电感耦合等离子体飞行时间质谱仪采购项目招标项目的潜在投标人应在中山大学智能电子采购系统(https://www.zhizhengyun.com)获取招标文件,并于2022年06月29日09点30分(北京时间)前递交投标文件。
中山大学 2022-06-09
基于聚焦离子束-扫描电子显微镜双束的材料微纳结构精确三维重构技术
基于聚焦离子束-扫描电子显微镜双束(FIB-SEM)的切割-扫描操作, 能够使材料的微纳结构在三维空间的精确重构得以实现。经过多年经验的积累,已开发出一套针对拥有复杂微纳结构的金属陶瓷复合材料进行三维重构的技术解决方案。该技术在固体氧化物燃料电池领域,为固体多孔电极材料的微纳尺度精确定量分析提供了有力的技术支持。作为本领域的知名专家,美国西北工业大学的 Scott A. Barnett 教授曾在国际 SOFC 领域规模最大的年会 International Symposium on SOFC 中重
哈尔滨工业大学 2021-04-14
科研进展 | 西湖大学裴端卿实验室破解机械敏感离子通道OSCA/TMEM63力感应和传递机制
西湖大学细胞命运调控实验室继3月份报道人源电压门控钾离子通道Eag2电压感应下的延迟整流机制后1,团队联合Victor Chang心脏研究所在Nature Communications杂志发表题为"A mechanical-coupling mechanism in OSCA/TMEM63 channel mechanosensitivity"的研究论文。
西湖大学 2023-07-11
连续法大气压低温等离子体聚四氟乙烯表面处理清洁生产技术
2010年我国含氟聚合物产能约8万多吨,占世界总产能的三分之一,产量近6万吨,其中PTFE约占80%,已成为世界第二大生产国。根据国家氟化工十二五规划,到2015年我国含氟聚合物产能将达到13.4万吨,产量达到9.4万吨,其中PTFE约占70%。随着战略性新兴产业的兴起,PTFE应用范围已经从传统领域扩展到环保、生物医药、新能源、电子信息等新兴产业领域。如在环保领域,PTFE膜接触器应用于烟道气处理;在生物医药领域,PTFE中空纤维管用作血浆过滤器;在新能源领域,PTFE用作锂电池隔膜和太阳能电池背板;在电子信息领域,PTFE用作驻极体材料。而这些应用,无一不涉及到对PTFE的表面处理。传统的湿化学法已经不能适应,正如氟化工十二五规划中所述:产品结构不合理,中低端产品为主,高端产品仍然依赖进口;应用开发不力,加工技术和设备落后。 大气压低温等离子体材料表面改性是一种新型的表面改性方法,这种方法可以有效地改善材料表面性能,且凭借其独特的优点使其具有其它传统方法不可比拟的优势,是一项值得深入研究的有广阔应用前景的技术。本项目采用大气压低温等离子体改性PTFE材料,替代传统的湿法化学处理方法,从而提高其表面的粘接性、吸湿性、可染色性、及生物相容性等性能,开发出适合对PTFE表面处理的高放电均匀性、高放电电离效率和大面积的均匀等离子体在线清洁处理技术,从而达到对PTFE表面改性的有效调控,取代传统的化学表面处理方法,推动相关产业的技术进步和PTFE在新兴行业中的应用,对于提升PTFE产品档次,促进PTFE在新兴行业的应用具有现实意义。 本项目所采用的常压低温等离子体设备为大面积、均匀连续处理设备,如图所示,可以实现稳定均匀DBD模式运行,配合上收卷、送卷,臭氧抽气等装置,可实现在线连续运行。目前已在实验室实现电极长度为1.5米的的大面积放电,如图(a)所示,将进一步结合在线处理要求,深入研究等离子在线处理工艺,开发如图(b)所示的在线处理样机。处理宽度0.5m,处理速度1-5m/min可调;处理厚度0.05-0.5mm;处理后PTFE表面水接触角不大于50°;PTFE表面微观形貌:表面刻蚀程度均匀。 技术特点及创新性 针对目前PTFE表面处理中采用的湿法化学处理方法安全性、环保性、节能性差的缺点,采用大气压低温等离子表面处理技术,通过研究放电参数、处理结构及处理气体对PTFE表面改性影响的规律,获取最优改性处理条件,找到最适合取代化学处理方法的PTFE表面状态;通过研究在PTFE表面接枝不同的分子链,使其表面产生新的分子结构和新的功能,解决表面处理后老化效应等问题;开发新型的DBD等离子体处理样机,提高等离子体大面积处理均匀性;实现对PTFE表面处理的在线连续性、经济性、清洁性和安全性。同时为低温等离子体材料表面改性的大规模工业应用提供实践。研发出适应工业化生产的PTFE表面处理新技术和新设备,从而提高其表面的粘接性、吸湿性、可染色性、及生物相容性等性能,而且改性只涉及表面纳米级别范围内,基体性能不受影响,对于提升PTFE产品档次,促进PTFE在新兴行业的应用具有现实意义。 ●应用前景: 以聚四氟乙烯复合胶带为例,该产品是采用PTFE乳液浸渍玻璃纤维基布,生产出聚四氟乙烯漆布,再进行单面表面处理后,涂上一层有机硅胶粘剂。该产品表面光滑,有着良好的抗粘性,耐化学腐蚀和耐高温性以及优秀的绝缘性能,并具有反复粘贴功能,广泛应用于在造纸、食品、环保、印染、服装、化工、玻璃、医药、电子、绝缘、砂轮切片、机械等领域,还可应用于浆纱机的滚筒、热塑脱模等行业。该产品预计全国年用量达1000多万㎡。再以太阳能电池组件背板为例,其主流产品是TPT。该产品是由上下两层PVF(聚氟乙烯)和PET(聚对苯二甲酸二乙酯俗称涤纶)薄膜三层复合而成。该产品的生产就涉及到对PVF的表面处理。相对于PTFE来说,PVF的表面处理就比较容易。据统计1兆瓦组件需要8800-10000平方米的背膜,2007年我国组件量为1717兆瓦,消耗各种背膜1500-1700万平方米,全部依赖进口。据《2008年中国光伏太阳能行业研究与投资前景分析报告》预测,2008年世界组件量为将上升40%,约为5600兆瓦,我国组件量约为2400兆瓦,需要背膜约1900-2400万平方米,PVF表面处理量达3800-4800万平方米。 目前,国内外相关研究大多实验室阶段,国外一些知名的大公司,如道康宁、3M以及德国的一些公司,也正致力于该技术研究。从目前报道资料情况上看,国外仅道康宁公司有应用报道,国内尚无相关产品推出。因此技术属于自主創新技术,将填补国内空白,达到国际先进水平。本技术具有应用的普遍性,不但可用于PTFE的表面处理,更可用于其它氟树脂和难粘高分子材料的表面处理,具有广阔的市场前景。本技术还可以推广到其他高分子材料处理领域,以及保护性包装、生物材料处理、薄膜沉积、生物医学应用等领域,在提高材料表面性能,开创材料新的应用领域方面发挥着至关重要的作用。
南京工业大学 2021-01-12
北京大学生命科学学院秦跟基课题组发现植物细胞分裂素信号途径重要新组分
植物激素在调控植物可塑性发育等多个方面均起到非常重要的作用。植物遗传学和分子生物学的发展使很多重要植物激素包括生长素、细胞分裂素、赤霉素、乙烯、脱落酸、茉莉素、油菜素内酯和独脚金内酯的信号通路得以解析。
北京大学 2022-10-10
一种可选择性分离富集巯基化合物的复合纳米纤维材料及其制备方法与应用方法
本发明公开一种可选择性分离富集巯基化合物的复合纳米纤维材料及其制备方法与应用方法,该复合纳米纤维材料为以高分子聚合物纤维为芯层,以纳米金属颗粒为皮层的纳米金属颗粒功能化纳米纤维,由金属化合物、高分子聚合物和溶剂制成,以溶剂体积计,金属化合物加入量为0.5mol/L、高分子聚合物加入量为10~15g/100ml;其制备方法为:将高分子聚合物加入溶剂中,待其溶解后,加入金属化合物、混匀,将溶液置于室温下持续搅拌,得到高分子聚合物/金属盐前驱体溶液;将前驱体溶液静电纺丝制成高分子聚合物/金属离子复合纳米纤维,再经原位还原得到纳米金属颗粒功能化纳米纤维,其对巯基化合物有选择性吸附作用,可在巯基化合物的提取、制备、检测方面广泛应用。
东南大学 2021-04-11
一种基于射频与常压辉光放电的四管道异性型聚酯纤维面料表面功能化改性设备及方法
本发明公开了一种基于射频与常压辉光放电等离子体的四管道异性型聚酯纤维面料表面功能化改性设备及方法,属于纺织材料改性技术领域。设备由射频等离子体反应器和常压辉光放电反应器组成,其中射频等离子体反应器包括平行板电极、气体注入管道、中央控制系统;常压辉光放电等离子体反应器配备针极电极、PID温控模块及气体混合系统。通过双反应器协同作用,结合多通道气体精准注入与智能控制,实现阻燃、抗菌、疏水多功能改性。方法包括预处理清洁、氩气活化表面、接枝阻燃单体、氦气交联强化、CF<subgt;4</subgt;疏水处理、抗菌剂接枝及后处理。本发明突破传统工艺局限,解决功能单一、均匀性差及耐久性低的问题,适用于高温工作防护服、医用纺织品等领域。
南京工业大学 2021-01-12
首页 上一页 1 2
  • ...
  • 91 92 93 94 95 96 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    64届高博会于2026年5月在南昌举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1