高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
一种分布式能量收集与智能变形的多功能机翼
本发明涉及一种分布式能量收集与智能变形的多功能机翼。该多功能机翼的柔性后缘通过拓扑优化进行设计,并由介电弹性体材料维持其表面形状,能在变形过程中保持连续光滑,避免传统操纵面与机翼之间的缝隙导致的气流分离,提高气动效率。同时,由于机翼表面连续,还能够减少气动噪声,提高飞行品质。
北京航空航天大学 2021-04-10
钙钛矿太阳能电池中非辐射复合能量损失的研究
钙钛矿太阳能电池制备工艺简单,成本低廉。近年来,该类太阳能电池因其快速增长的光电转换效率和逐步提升的器件稳定性,吸引了学术界和产业界的广泛关注,为光伏领域带来了新的机遇。然而,由于钙钛矿太阳能电池中存在非辐射复合损失,所以目前的光电转换效率依然低于肖克利-奎塞尔(Shockley-Queisser)理论所定义的极限效率。因此,最大化降低钙钛矿太阳能电池的非辐射复合损失是进一步提升电池器件效率的未来研究重点。 鉴于此,研究团队基于已有的研究基础,对“最大化降低钙钛矿太阳能电池的非辐射复合损失”这一论题进行深入探讨和系统总结。该综述文章主要包括以下几个方面:首先,介绍了钙钛矿太阳能电池中非辐射复合的起源,并详细讨论了非辐射复合损失的定量化测试方法;其次,系统总结了在降低非辐射复合损失方面的最近研究进展;再次,依据肖克利-奎塞尔理论,对钙钛矿太阳能电池所能够获得的最高光电转换效率进行了科学预测;最后,在展望部分,前瞻性地指出了最大化降低非辐射复合损失的未来努力方向。图1. 金属卤化物钙钛矿活性层内的电荷载流子产生与复合动力学机制 在理想的金属卤化物钙钛矿半导体材料中,所有的光生电子和空穴最终将通过发射光子的方式进行复合(即:辐射复合)。然而,在实际的钙钛矿太阳能电池中存在大量的非辐射复合通道(如图1所示),绝大部分光生载流子将优先通过其他非辐射途径进行复合(例如,缺陷辅助复合,俄歇复合,界面诱导复合,电声耦合,带尾态复合等)。这些非辐射复合损失过程极大降低了电池在稳态下的光生载流子浓度,从而减小了金属卤化物钙钛矿层中准费米能级劈裂的能级差,最终造成钙钛矿太阳能电池较大的电压损失。因此,最大化降低或抑制这些非辐射复合通道是提升器件开路电压和光电转换效率的关键。 针对各种非辐射复合通道,该综述首先介绍了目前量化分析非辐射复合损失的常规测试技术以及测试要点,如图2所示。图2. 量化钙钛矿薄膜和完整器件中非辐射复合损失的表征技术 随后,结合当前研究现状,进一步梳理了近年来在降低非辐射复合损失方面取得的一系列重要进展。值得一提的是,该研究团队去年在《Science》杂志上报道的基于溶液二次生长方法构建渐变结的策略(如图3所示),在降低反式钙钛矿太阳能电池的非辐射复合损失方面效果显著(Science 360, 1442-1446)。此后,一系列研究报道显示,相似的策略在正式常规结构钙钛矿太阳能电池和全无机钙钛矿太阳能电池中也可以获得正向的实验结果。由此说明,在金属卤化物钙钛矿半导体材料中构建有效的渐变结对后续降低非辐射复合损失具有非常重要的借鉴价值。图3. 渐变结钙钛矿太阳能电池器件结构和渐变结的时间分辨光谱 此外,该综述还以当前最高效率的砷化镓太阳能电池为参照,先假定钙钛矿太阳能电池的非辐射复合损失与砷化镓太阳能电池的情形一致,再依据肖克利-奎塞尔理论,对钙钛矿太阳能电池所能够获得的性能参数进行科学预测,进而给出电池器件所能达到的最高光电转换效率,如图4所示。图4. 当钙钛矿太阳能电池的非辐射复合损失与当前最高效率砷化镓太阳能电池的情况相同时,单结钙钛矿太阳能电池可实现的最优器件性能参数 最后,该综述也指出,目前提升器件性能的两条主要途径是最优化光子俘获和最大化降低非辐射复合损失。如果能将二者进行有效整合,探索更可靠的协同优化策略,这可能会是将器件光电转换效率提升至接近理论极限的可行方案。为此,综述也对一些未来的努力方向进行了展望。 总的来说,该综述为最大程度地降低钙钛矿太阳能电池的非辐射复合损失提供了理论总结,也为开展实验工作提供了参考借鉴,对进一步提升电池效率,推动该类电池产业化应用有重要意义。
北京大学 2021-04-11
一种基于纳米压电纤维的柔性能量捕获器件及其制备方法
本发明公开了一种基于纳米压电纤维的柔性能量捕获器件及其制备方法。所述器件自下而上依次包括:柔性基材、电极层、压电纤维层、保护层;所述柔性基材为柔性绝缘塑料薄膜;所述压电纤维层为 PVDF 纤维。通过采用柔性基材,采用照相制版工艺制备梳状电极,并选择合适的静电纺丝参数沉积 PVDF 压电纤维,无需再对压电纤维进行极化,使纤维整齐排列、减小纤维缺陷,能够简化纳米压电纤维能量捕获器件制备工艺,提高能量转换效率,尤其是对弯曲运动机械能的捕获效果。
华中科技大学 2021-04-14
纳米新能源材料能量转化的新规律及在高端电池中的应用
课题从事纳米新能源材料能量转化的新规律及在高端电池中的应用基础研究,在金属-空气电池、锂离子电池关键材料与技术以及能源清洁高效利用等领域开展工作,制备了一系列的金属与合金、金属氧化物、金属硫化物纳米材料以及无机/有机复合材料等,研究了纳/微米材料组成、结构、形貌与电极性能之间的关系,考察了材料高效储能的化学热力学、动力学等性能,并开展其能量转换与储存新规律的探索研究,探讨解决提升高能化学电源的容量、功率与寿命的有效途径。为纳米新能源材料的制备、表征及在能源领域的应用打下了基础。 研究
南开大学 2021-04-14
一种公路收费站减速带能量回收发电系统
一种公路收费站减速带能量回收发电系统,通过减速带下方的板簧上的垂向连杆与扇形齿轮相连;再由扇形齿轮分别驱动内啮合棘轮机构一、内啮合棘轮机构二,带动发电机一、发电机二分别在减速带下压和恢复过程中发电。该种发电系统结构简单、成本低、使用安全可靠、发电效率高、不污染环境。
西南交通大学 2016-10-20
一种基于山脊能量校正的山地中带状地下目标的探测方法
本发明公开了一种通过检测山地环境中山脊位置并进行能量校正来提高对山地环境中带状地下目标的探测、识别、定位方法。该方法属于模式识别、遥感技术、地形分析的交叉领域。带状地下目标的·758·热场与山体的热场不同能产生能量异常,而山脊的热岛效应也会造成山体能量异常,但该异常本质上与带状地下目标的能量异常模式不同,所以本发明意在通过消除地形中的山脊所产生的热体效应对带状地下目标表现出的微弱能量异常模式的影响,达到
华中科技大学 2021-04-14
高能量密度纳米复合介电储能材料及脉冲电容器
一、项目分类 关键核心技术突破 二、成果简介 随着电力需求的不断增长,高性能储能装置对现代社会的可持续发展起着至关重要的作用。与超级电容器和锂电池相比,脉冲储能电介质电容器拥有超高的可释放功率密度,高的操作电压、极快的充放电速率以及长的循环寿命,是重要的新型功率储能器件,在新能源汽车、高端医疗器械、智能电网调频、可控核聚变、电磁炮等高功率脉冲技术的军民领域有着重要应用。
华中科技大学 2022-07-26
1000KN/100吨微机控制电液伺服万能材料试验机
       1000KN/100吨微机控制电液伺服万能材料试验机机械结构原理 本设备主体部分由高度可调的支撑架[由机座、丝杆及移动横梁(下钳口座)组成]和工作框架[由工作油缸、活塞、台板、支架及上横梁(上钳口座)组成]。其工作原理为:由高压油泵向工作油缸供油,通过活塞运动,推动台板和上横梁(上钳口座)向上运动,进行试样的拉伸或压缩试验。拉伸试验在主机的上横梁与移动横梁之间进行,压缩试验在主机的台板与移动横梁之间进行。试验空间的调整通过驱动机构(升降电机、链轮、链条等)驱动双丝杆同步旋转使移动横梁升降达到。 1000KN/100吨微机控制电液伺服万能材料试验机电气原理 本设备采用三相380V、两相220V 50Hz交流供电。主回路包括油泵电机和升降电机,在主回路和控制回路中分别接有熔断器以防止过大的电流,在油泵电机和升降电机前还串联了热继电器以防止电机过载。   1000KN/100吨微机控制电液伺服万能材料试验机开箱验收 当您开箱后,请根据定货合同和装箱单对设备及附件的数量进行核对并检查是否完整,如发现短缺或损坏请尽快通知本公司以便及时处理。
河北建仪仪器设备有限公司 2025-06-27
一种直流接触器节能控制装置及控制方法
本发明公开了一种直流接触器节能控制装置,包括:微处理器模块:用于控制电压和电流采集模块、驱动模块、低压保护模块、外部存储模块以及液晶显示模块的工作;电压和电流采集模块:用于将电源电压和线圈电流转换为微处理器模块的A/D口所允许的电压值;驱动模块:包括两个与线圈串联的开关管和一个与线圈并联的续流二极管;低压保护模块:用于防止线圈电压过低造成不可靠合闸;外部存储模块;液晶显示模块:用于显示直流接触器的状态信息;电源模块:用于给整个控制装置供电。本发明有效地减小了保持阶段的线圈电流,降低了线圈温升,节约了能源。
东南大学 2021-04-11
基于基板速度调节的纳米纤维直径控制方法及控制装置
本发明提供了一种基于基板速度调节的纳米纤维直径控制方法,包括:(1)使高分子溶液从喷嘴中拉出形成纳米纤维;(2)通过控制运动控制卡使基板运动;(3)使用带有显微镜头的高速相机实时采集沉积在基板上的纳米纤维形貌图像;(4)实时计算出纳米纤维的直径;(5)将纳米纤维直径与预先设定的设定直径进行比较得到偏差,采用控制算法使得纳米纤维稳定在设定直径处。本发明从影响纳米纤维的主要因素之一基板速度来实现闭环控制,以稳定纳米纤维直
华中科技大学 2021-04-14
首页 上一页 1 2
  • ...
  • 18 19 20
  • ...
  • 149 150 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    64届高博会于2026年5月在南昌举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1