高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
工业和信息化部等十七部门关于印发《“机器人+”应用行动实施方案》的通知
当前,机器人产业蓬勃发展,正极大改变着人类生产和生活方式,为经济社会发展注入强劲动能。
工业和信息化部 2023-01-31
基于工业机器人的大口径光学元件高效精密磨抛加工关键技术与装备开发
成果简介: 国内外大科学工程研究中如激光聚变,空间光学,天文望远镜等,都对大口径光学元件提出了较大的需求和较高的要求,而国内大口径光学加工制造能力还远落后于美国,欧洲等国家。随着国内对大口径光学元件的需求越来越大,精度越来越高,口径越来越大,孔径也不断增大,适用于大尺寸、非球面、高效、精密的柔性加工技术已成为制约其发展和亟待解决的关键问题。利用智能化自动化技术生产取代传统手工低效率研磨已经成为必然趋势。为适应大口径光学元件的加工,结合现有成熟工业机器人技术条件,先进制造装备及控制实验室开展了多工具柔性磨抛复合加工技术的研究,利用工业机器人模拟手工研磨镜面加工技术,通过在末端关节安装的专门研发磨抛工具头对各型大口径平面及曲面类光学元件进行高效率研磨加工,还能根据光学元件面形检测得出的误差结果,专门开发了自主知识产权的软件能智能化地在光学表面相应的区域自动选择修正工具,并自动通过高效叠代算法得出合适的磨抛材料去除函数,并生成高精度光学表面加工程序,有效地控制加工大口径光学元件过程中产生的各种误差,特别是能有效克服“蹋边问题”,该成套技术不仅能大大提高大口径光学元件的抛光效率和加工精度,另外与采用精密数控机床加工相比还能有效降低企业设备采购与维护成本。 应用领域: 核聚变、空间光学、天文光学望远镜、光学镜头等涉及光学元件制造行业 技术指标: 实现直径1米的大口径光学元件磨抛加工; 直径500mm的平面反射镜有效口径范围面形精度达到PV=0.387λ、rms=0.063λ。
电子科技大学 2017-10-23
东南大学杨洪教授课题组研发高性能仿弹尾虫软跳跃机器人
日前,东南大学智能材料研究院、化学化工学院杨洪教授课题组在光控软驱动器研究领域取得重要进展,开发了一种具有卓越跳跃性能的软体机器人。研究成果于近日发表在国际顶级期刊《德国应用化学》上,并被选为VIP论文。
东南大学 2023-03-08
一种多足机器人平衡控制方法
本发明公开一种多足机器人平衡控制方法,用于多足机器人在非结构化地形条件下运动时的平衡控制,控制流程简洁明确。本发明是检测到机器人失稳后,快速计算出调整腿末端下一个运动周期的落点位置,执行控制策略后,将使得机器人由失稳状态迅速转换为静态稳定状态。足端落点位置应满足的约束条件和足端落点位置均由解析式给出,计算效率较高,适合于在线实时计算和实时控制。整套控制方法利用机器人各关节角度信息、机身位姿信息和足端脚力信息对机器人各腿的运动进行位置控制,该控制方法适应于多足机器人在非结构化环境下的平衡控制。
华中科技大学 2021-04-11
自主神经模型自主神经解剖模型XM-628
XM-628自主神经解剖模型   XM-628自主神经解剖模型按成人实际标本大小塑制而成,显示自主神经系统结构全貌,自主神经系统由交感神经和副交感神经组成,模型中交感神经呈黄色,副交感神经呈白色。显示的结构:大脑、面神经、三叉神经、额神经、泪腺神经、眶下神经、牙神经 、舌神经、气管、食管腮腺、舌下腺、甲状腺、颈内动脉丛、颈神经、主动脉、腔静脉  肺动静脉 、心  、心丛  灰白交通支、腹腔神经、腰骶神经节、肠系膜神经等。 尺寸:自然大,30×12×86cm 材质:PVC材料
上海欣曼科教设备有限公司 2021-08-23
基于力觉信息和姿态信息的肢体运动意图理解与上肢康复训练机器人及其控制方法
本发明公开一种基于力觉信息和姿态信息的肢体运动意图理解与上肢康复训练机器人及其控制方法,通过姿态传感器分别获取人体手臂的各个姿态信息,并输入至控制器,人体手臂发力通过摇杆作用于六维力传感器上,六维力传感器输入相应信号至控制器,控制器将获取到的姿态参数以及力觉参数,通过建立的意图识别模型解算,并控制康复训练机器人做出相应动作,对康复训练机器人实现控制,以实现微弱主动力下的辅助主动训练。
东南大学 2021-04-11
自主飞行器平台
机器人研究中心自主研制的自主飞行器平台,用于控制旋翼飞机,实现旋翼飞机的自我控制。目前,市场上现存的自主飞行器平台存在功能单一、移植性差、自我控制不稳定等问题。自主飞行器借助先进的控制理论技术,实现自主飞行器自主起降、悬停、避障等多种功能,在自主飞行器平台市场具有广阔的市场发展前景。 国内外对采用以遥控直升机为基础进行旋翼飞行器的全自主高机动飞行控制的研究必将继续推进,研究成果也会被更广泛应用。我们设计了一套完整的四旋翼自动控制系统。该系统不仅包括控制算法的设计,还包括传感器、控制板等相关硬件平台的实现。
电子科技大学 2021-04-10
自主飞行器平台
机器人研究中心自主研制的自主飞行器平台,用于控制旋翼飞机,实现旋翼飞机的自我控制。目前,市场上现存的自主飞行器平台存在功能单一、移植性差、自我控制不稳定等问题。自主飞行器借助先进的控制理论技术,实现自主飞行器自主起降、悬停、避障等多种功能,在自主飞行器平台市场具有广阔的市场发展前景。
电子科技大学 2021-04-10
自主可控高性能SSD
已有样品/n传统磁盘存储系统面临性能、功耗等巨大挑战,基于NAND Flash的SSD得到广泛引用并且呈现持续快速增长的趋势。自主开发的高性能大容量SSD产品将带来巨大的经济效益并且有望打破国外技术垄断,构建自主知识产权。本成果提供了构建高性能、大容量SSD的解决方案,采用Xilinx Virtex-7系列FPGA芯片,PCI-E 2.0 X8高速传输接口,读性能≧2400MB/s,写性能≧1200MB/s,最大可构建6TB存储容量。同时,拥有软件、硬件以及算法全部自主知识产权,并可针对应用需求提供
华中科技大学 2021-01-12
自主飞行器平台
机器人研究中心自主研制的自主飞行器平台,用于控制旋翼飞机,实现旋翼飞机的自我控制。目前,市场上现存的自主飞行器平台存在功能单一、移植性差、自我控制不稳定等问题。自主飞行器借助先进的控制理论技术,实现自主飞行器自主起降、悬停、避障等多种功能,在自主飞行器平台市场具有广阔的市场发展前景。 国内外对采用以遥控直升机为基础进行旋翼飞行器的全自主高机动飞行控制的研究必将继续推进,研究成果也会被更广泛应用。我们设计了一套完整的四旋翼自动控制系统。该系统不仅包括控制算法的设计,还包括传感器、控制板等相关硬件平台的实现。
电子科技大学 2015-12-25
首页 上一页 1 2
  • ...
  • 69 70 71
  • ...
  • 146 147 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    64届高博会于2026年5月在南昌举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1