高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
一种两层非均匀拓扑结构异构网络下的网络资源分配方法
本发明提出一种两层非均匀拓扑结构异构网络下的网络资源分配方法,目标模型构建为所有用户速率的对数累加和并将目标模型所要解决的问题拆分为三个子问题依次求解:首先,初始化其他的参数,求解当前情况下的用户连接及频率资源分配;第二,当用户连接及频率资源分配情况确定以后,求解当前最优的ABS比率配置;第三,求解每个Macro基站在ABS时隙的发射功率;设置终止条件,循环执行步骤一到步骤三,当满足终止条件时停止循环。该方法可以提高系统的总用户速率并且保证了用户之间的公平性。
东南大学 2021-04-11
中国高等教育学会关于召开资源·环境·生态文明与人才培养论坛的通知
为深入学习贯彻党的二十大精神,践行习近平总书记“绿水青山就是金山银山”理念,探索大学生生态文明教育的新路径,经研究,中国高等教育学会决定举办资源·环境·生态文明与人才培养论坛,该论坛是2023年4月8-10日在重庆举办的第58·59届中国高等教育博览会的组成部分,现将有关事项通知如下。
中国高等教育学会 2023-03-24
东北财经大学刘凌冰:课程虚拟教研室和数字化教学资源建设
高等教育经管学科数字化资源与学科建设学术活动
中国高等教育博览会 2024-06-12
高等教育经管学科数字化资源与学科建设学术活动嘉宾演讲资料分享
第61届中国高等教育博览会系列活动
中国高等教育博览会 2024-06-07
一类呋喃香豆素类化合物作为抗乙型肝炎病毒(HBV)药物的应用
具有新颖的结构,可上调脂代谢相关蛋白ABCA1,是PDE5的强效抑制剂,具有开发成为抗心血管疾病如 本技术成果是以人类NF-κB DNA结合位点为药物设计靶点,通过计算机辅助药物筛选获得一系列 肺动脉高压,以及男性性功能障碍的治疗药物的潜力。 可能具有人类NF-κB抑制活性的化合物。在细胞水平对筛选获得的化合物进行抗HBV复制抑制实验, 发现其中一类高治疗指数的新型呋喃香豆素类化合物可以有效抑制HBV DNA复制,减少HBV表面抗原 (HBsAg)、HBV e抗原(HBeAg)分泌。此类呋喃香豆素类化合物可用于治疗HBV感染引起的肝炎,有 望进一步开发为一种抗乙型肝炎病毒(HBV)药物。FDA批准上市的5个抗HBV NAs药物,均已出现耐药病 毒株,且出现交叉耐药现象。
中山大学 2021-04-10
一种通过scout ESI和CNN解码EEG运动想象四分类任务的新方法
导读东北电力大学和长春理工大学研究团队开发并实现一种结合脑电图源成像(ESI)技术和卷积神经网络(CNN)的新方法,以对运动想象(MI)任务进行分类。ESI技术采用边界元法(BEM)和加权最小范数估计(WMNE)分别解决EEG的正向和逆向问题。然后在运动皮层中创建十个scout来选择感兴趣的区域(ROI)。研究者使用Morlet小波方法从scout的时间序列中提取特征。最后,使用CNN对MI任务进行分类。实验结果:在Physionet数据库上的整体平均准确率达到94.5%,分别对左拳头、右拳头、双拳和双脚的单个准确率达到95.3%、93.3%、93.6%、96%,采用十倍交叉验证进行验证。研究人员表示,他们的研究成果与最先进的MI分类方法的结果相比,总体分类增加了14.4%。研究者为验证方法的有效性,加入了4个新的受试者进行验证,发现总体平均准确率为92.5%。此外,全局分类器适应单一对象,整体平均准确率提高到94.54%。研究者表示,他们提出的结合scout ESI和CNN的方法,提高了脑电解码四类MI任务的BCI性能。系统框架图1 系统框架图系统框架如图1所示。原始数据来自国际10-10系统的64个电极(不包括Nz、F9、F10、FT9、FT10、A1、A2、TP9、TP10、P9和P10电极),并以每秒160个样本的速度采集。根据国际10-10系统从64个通道采集原始脑电图,并使用BCI2000系统进行记录。记录的数据被分为四个独立MI任务包括左拳MI,右拳MI,双拳MI和双脚MI。首先,由于ERD在执行运动想象时在alpha和beta中不同,因此使用FIR滤波器对EEG进行了8 Hz至30 Hz的带通滤波。然后,通过计算包含正问题和逆问题的源,将传感器空间的活动转化为源空间的活动。接下来,创建scout并提取特征。研究者在运动皮层中创建了10个scout,因为我们只关心与运动相关的活动。十个scout中的每一个都代表了可用源空间中的一个感兴趣的区域(ROI),并且是定义在皮层表面或头部体积上的偶极子的子集。左脑的scout称为L1、L2、L3、L4、L5,右脑的scout称为R1、R2、R3、R4、R5。利用JTFA从10个scout的源时间序列中提取特征。最后,利用CNN对时频图进行分离并进行分类。实验在实验中,研究人员仅使用了随机选择的十个受试者的MI trail (S5,S6,S7,S8,S9,S10,S11,S12,S13,S14)。这里用于分析的数据集包含每个受试者84次试验,每一类包含21次试验。在记录64通道脑电图时,受试者执行了不同的运动想象任务。每个受试者针对以下四个任务中的每一个执行了3轮21试验:当目标出现在屏幕左侧时,受试者想象打开和合上相应的拳头,直到目标消失。然后受试者放松。当目标出现在屏幕的右侧时,受试者想象打开和合上相应的拳头,直到目标消失。然后受试者放松。当目标出现在屏幕顶部时,受试者想象打开和合上双手的拳头,直到目标消失。然后受试者放松。当目标出现在屏幕底部时,目标会想象双脚张开和合拢,直到目标消失。然后受试者放松。为了统一数据维数,研究者选择了4s的数据,因为每次想象任务的执行时间都在4s左右。此外,脑电图任务是分开的,研究人员在实验中将左拳,右拳,双拳和双脚MI任务分别称为T1,T2,T3和T4。图2 scout命名左右运动想象的scout分别命名为L1、L2、L3、L4、L5、R1、R2、R3、R4、R5,如图2所示。10个scout每一个都被扩展到40个顶点,每个顶点只有一个源。L1区域对应40个信号,其他scout也一样。在计算了来源后,研究者在运动皮层中创建了十个scout,如图3所示。图3 创建10个scout使用ESI计算十个受试者(S5、S6、S7、S8、S9、S10、S11、S12、S13、S14)每次试验的四个任务(T1、T2、T3、T4)的源。对于这四项任务中的每一项,每个受试者每次都要进行7次测试(#1,#2,#3,#4,#5,#6,#7)。展示了第一个步的10个被试的10个scout的4项任务的来源。然后提取10个scout的时间序列进行进一步分析。特征提取在计算源之后,研究人员在运动皮层中创建了包含40个源的10个scout,并提取了scout的时间序列。如图4所示为提取R5 scout时间序列作为示例。图的右边显示了R5 scout的时间序列。本文利用小波变换从scout时间序列中提取特征。图4 提取R5 scout时间序列作为示例在这项研究中,研究者提出利用CNN来解决运动想象任务分类的问题。该模型基于Schirrmeister等提出的Deep ConvNet架构,该网络模型由一个六层卷积网络组成,其中两个最大池层和三个全连接层,如图5所示。图5对于Physionet数据库,研究者首先采用Deep ConvNet架构,包括四个卷积层、四个最大池层和一个全连接层。在实验中,研究者依据经验使用两个最大池化层。并尝试了不同数量的卷积层和完全连接层。时频图利用Morlet小波方法得到了scout的特征。对于每个任务,R5 scout的时频图如图6所示。包含时间和频率互补的时频分析方法提供了时域和频域的联合分布信息,清晰地描述了信号频率与时间的关系。图6 R5 scout的时频图显然,只有部分时频映射是红色的,表明每个任务只对特定的频率和时间敏感。由于图的数量比较大,研究者使用CNN来选择和学习这些图中最基本的特征。研究人员随机选择了几个样本,并将一些特征图可视化,作为MI任务的学习表示,如图7所示。图7为了获得有效的结果,将数据集分为90%作为训练集,其余10%作为测试集。首先,将十个受试者的数据集(总共19320个样本)分为17388个样本以训练所提出的CNN模型,以及1932个样本以验证模型的有效性。在实验中,研究者还选择了另外四个受试者的数据集以增加数据集的规模(27048个样本),其中24343个样本是训练集,其他样本是测试集。在选定的scout上对所提出的CNN架构进行了十次训练和测试,以验证所提出模型的鲁棒性。图8(a)显示了10个scout中每个的全局平均精度。图8 统计结果R5的全局平均精度最高,达到94.5%,而L2的全局平均精度最低,为91.3%。对应L1、L3、L4、L5、R1、R2、R3、R4的整体准确率分别为92.4%、92.5%、93.6%、91.9%、93.0%、91.8%、92.1%、92.6%。所有scout的总体精度均在91%以上,标准差均在0.20%以下。图8(b)显示了十个scout中每个scout四个MI任务的组级统计结果及其标准差。一般来说,R5表现的要比其他的好,而L2在迭代2000中表现最差。标准差较小,说明这些精度更接近平均值且稳定。图9 统计结果图9(a)显示了带有标准差的混淆矩阵,说明了group level分类结果。T1、T2、T3和T4的全局平均精度峰值分别为95.3%、93.3%、93.6%和96.0%。R5 scout的四个MI任务中的每一个都如图9(b)所示。通过改变训练集和测试集顺序的10次试验,确定了scoutR5的性能,结果如图10(a)和(b)所示。在10次试验中,scout R5的T1、T2、T3、T4的平均准确率分别为93.3%、93.8%、94.2%、94.1%。换句话说,四个任务中每一个的平均准确率都超过了93%。全局平均准确率为93.7%。10次试验结果表明,该方法对scout R5的分类效果较好。从以上结果可以清楚地看出,R5 scout在四种MI任务的分类中扮演着最重要的角色。因此,选择R5对四个MI任务进行分类。图 10图11. (a)是不同模型的全局平均准确性的比较。可以发现,该研究提出的模型可以达到最大的精度。从图11. (b)不同模型的ROC曲线可以看出提出的模型比其他模型表现更好。©不同模型T1上的精度比较。(d)不同模型T2的精度比较。(e)不同模型T3的精度比较。(f)不同型号T4的精度比较。图11 不同模型的精度比较结论东北电力大学和长春理工大学研究团队开发并实现一种结合脑电图源成像(ESI)技术和卷积神经网络(CNN)的新方法。该方法可以对运动想象(MI)任务进行分类。实验结果表明,他们的研究成果与最先进的MI分类方法的结果相比,总体分类增加了14.4%。研究者加入了4个新的受试者进行验证来验证方法的有效性。研究者表示,他们提出的结合scout ESI和CNN的方法,提高了脑电解码四类MI任务的BCI性能。论文信息:A novel approach of decoding EEG four-class motor imagery tasks via scout ESI and CNN
东北电力大学 2021-04-10
一种新型胍类磁性离子液体及其去除非极性溶液中含硫有机物的用途
本发明涉及一种磁性离子液体,特指基于胍基官能团的离子液体的制备方法及在萃取脱除非极性溶液中含硫有机物的用途。其结构如通式(I)所示,该类离子液体是典型的室温离子液体,具有很低的熔点及很高的沸点,室温呈液态,蒸汽压低,稳定性好,与非极性溶剂互溶度极低;具有极高的脱硫效率,可在3~6min达到脱硫的萃取平衡;选择性高,不会对原来的非极性溶液产生污染及着色。该发明的磁性离子液体之中,当n=1.5~2时,具有很高的顺磁性,其比磁化系数大于59.1×10-6emu/g,优于已有的报道。因此,萃取脱硫结束后可以通过外加磁场的方法方便地实现离子液体和非极性溶剂的分离。该类磁性离子液体通过加水稀释并用四氯化碳反萃取的方法能恢复其性能,并且可以循环多次使用而不会引起脱硫效率的明显降低。脱除的含硫芳环化合物也能通过减压蒸馏富集并实现回收利用。
四川大学 2017-12-28
用于检测β-胡萝卜素类色素的单克隆抗体及酶联免疫技术与试剂盒
中试阶段/n该项目缩短了检测时间,降低了检测成本,同时具有检测灵敏度高、精密度好、准确性好的特点。
华中农业大学 2021-01-12
药用植物大戟3-羟基-3-甲基戊二酰辅酶A的还原酶蛋白编码序列
一种药用植物大戟Ep-Hmgr蛋白编码序列,属于基因工程领域。所分离出的DNA 分子包括:编码具有药用植物大戟Ep-Hmgr蛋白活性的多肽的核苷酸序列,所述的核苷酸序列与SEQ ID NO.3中从核苷酸第81-1832位的核苷酸序列有至少70%的同源性;或者所述的核苷酸序列能在40-55℃条件下与SEQ ID NO.3中从核苷酸第81-1832 位的核苷酸序列杂交。本发明是一种3-羟基-3-甲基戊二酰辅酶A的还原酶,有助于提高药用植物大戟中次生代谢产物或其前体的含量,对于保护人民的健康生长有所帮助
江苏师范大学 2021-04-11
新型植物生物反应器应用于药材种苗规模化扩繁与代谢产物制备
成果简介: 由于我国优质、肥沃的土地资源短缺,而沿海滩涂地土地辽阔但无法进行农作物和经济作物的种植。如何利用滩涂地资源,成为了解决土地问题的有效方法之一。本项目开发出新型植物生物反应器,属于现代农业技术,可以在滩涂地进行集成农业种植,解决了滩涂地无法种植的问题,合理的、有效的、环境友好的利用了沿海土地资源。
南京工业大学 2021-01-12
首页 上一页 1 2
  • ...
  • 75 76 77
  • ...
  • 83 84 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    63届高博会于5月23日在长春举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1