高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
一种兼具张力控制的薄膜输送纠偏装置
本发明提供一种兼具张力控制的薄膜输送纠偏装置,包括薄膜输入导向辊和输出导向辊,用于分别将薄膜导向输入和输出纠偏执行机构;偏移检测机构,用于检测薄膜是否偏移;张力检测机构,用于检测薄膜张力;控制器,用于依据检测信息产生纠偏或\和张力控制指令;纠偏执行机构,包括球形电机、偏转框架和纠偏辊;球形电机的动子带动偏转框架在薄膜进给面上转动,纠偏辊与薄膜间的摩擦驱使薄膜逆方向的转动实现纠偏;同时,球形电机的动子带动偏转框架在薄膜进给面的垂直面上转动,拉紧或放松薄膜实现张力控制。本发明同时实现薄膜的纠偏和张力控制
华中科技大学 2021-04-14
用CuCl薄膜处理生物难降解有机废水的方法
本发明涉及一种有机工业废水的催化氧化处理方法,特别是用CuCl薄膜处理生物难降解有机废水的方法。采用CuCl2溶液浸泡铜网产生的CuCl薄膜为催化剂,把CuCl/铜网催化剂置入反应器中,以900~1200ml/h的流速通入pH=5~9的有机废水,并通入空气进行氧化反应,空气流速为0.09m3/h,反应1~9小时,反应后的溶液加入聚合硫酸铁沉降。本发明在常温常压下能将COD为1500~3800mg/l有机助剂废水降到600mg/l,COD去除率达到60~7
南开大学 2021-04-14
一种薄膜非连续卷绕输送模切装置
本发明提供一种薄膜非连续卷绕输送模切装置,包括:放料辊,用于对成卷柔性薄膜的放卷;收料辊,用于对成卷柔性薄膜的收卷;输送对辊,设在所述放料辊和收料辊之间,用于完成薄膜进给;摩擦对辊和设在放料辊上的滑差轴,用于协作保持薄膜在进给过程中的张力稳定;模切机,用于完成薄膜裁切;工业相机,用于对薄膜的模切切痕成像;工业计算机,用于对模切切痕成像进行图像处理,处理得到的误差作为薄膜输送进给步长的精度补偿。本发明通过视觉装置识别薄膜上的模切切痕,图像处理所得薄膜进给误差,补偿下一步薄膜进给步长,有效保证薄膜非连续卷绕进给工况下,模切机薄膜进给精度和裁切切口均匀性。
华中科技大学 2021-04-11
色素(染料)敏化复合薄膜太阳能电池
成果与项目的背景及主要用途: 将太阳能转换为电能是目前各国研究的重点, 它具有清洁、不需要燃料、能广泛的应用于各个领域等优点。由于成本低,转化效率高,染料敏化纳米晶太阳能电池近年来成为纳米技术和光电转换材料研究领域的热点, 其发展可解决硅电池原材料紧缺的问题,具有很广阔的发展前景。二氧化钛广泛应用于染料敏化太阳能电池(DSSC)的制备,但因 TiO2 薄膜结构缺陷的存在,不利于电子的传输,制约了光电转换效率的进一步提高,可通过制备 TiO2/ZnO 复合薄膜解决这一问题。采用天然色素(黑果枸杞色素和河湟红花黄色素)或染料对光阳极进行敏化处理可进一步降低成本,简化工艺流程。该项目成果具有成本低,生产工艺简单,生产过程中无污染等优点,比传统硅电池具有更为广泛的用途,可实现太阳能电池的轻量化、薄膜化,并易于设计成不同形状以满足不同使用环境的需要。 技术原理与工艺流程简介: 染料敏化太阳能电池主要是由纳米晶半导体薄膜、染料敏化剂、氧化还原电解液、导电基底以及对电极等几部分组成的。染料敏化太阳能电池的原理是源于光合作用的启发,其具体实现的方式是通过染料分子吸收太阳光中的光能,从而激发染料分子中的电子变成受激发的状态,通过与之复合的多孔薄膜传导出来。本项目采用溶胶凝胶法制备 TiO2/ZnO 复合薄膜,染料敏化太阳能电池的主要制备过程如下: 技术水平及专利与获奖情况:实验室成熟阶段 应用前景分析及效益预测: 生产成本较低,仅为硅太阳能的 1/5~1/10,且使用寿命较长,如进一步提高光电转换效率,可逐步取代硅太阳能电池。 应用领域:太阳能发电站、电子设备、太阳能建筑等,逐步取代硅太阳能电池
天津大学 2021-04-11
薄膜太阳能电池材料光谱响应测量系统
产品详细介绍■ 光谱测量范围:200-1100nm■ 测量重复性:≤3%(主要波长位置)■ 光源:高稳定、高输出能量氙灯光源■ 标准探测器经国家一级计量单位定标■ 标准探测器、待测探测器自动切换■ 光谱响应度曲线自动生成■ 样品室内包含标准样品架、固体样品架和液体电解池样品架■ 被测太阳光伏器件可为无机晶体、有机样品,可固体,也可固体,可加偏执电压等
北京卓立汉光仪器有限公司 2021-08-23
一种无需管棚工作室的注浆组合管棚结构及其施工方法
本发明公开了一种无需管棚工作室的注浆组合管棚结构,管棚包括多根轴向延伸并径向切入隧道拱顶的注浆管,该注浆管包括位于隧道开挖轮廓线外部并埋设在隧道拱顶的钢管,以及位于隧道开挖轮廓线内部并探出隧道拱顶的非金属硬质管;钢管与非金属硬质管通过对接接头同轴固定连通,且钢管与非金属硬质管的外壁上均间隔开设有多个泄浆孔;注浆施工时,注浆管内轴向插入有多根不同长度的排气溢浆管,该排气溢浆管分别由非金属硬质管轴端插入至注浆管不同深度。本发明旨在通过优化管棚结构简化施工流程,无需构建管棚工作室及导向墙,可以极大提高施工效率,同时保护了TBM的安全。
南京工业大学 2021-01-12
Q波段连续波曲折波导行波管
曲折波导行波管是传统螺旋线和耦合腔行波管的折中,具有较宽的工作带宽和较大的功率容量,在毫米波和太赫兹频段具有独特的优点。为了进一步提高器件的性能,研制了新型慢波结构,以及毫米波段新型慢波结构真空电子器件。研制成功的Q波段连续波曲折波导行波管突破了高效率曲折波导慢波结构设计、加工与装配、大电流密度电子枪、大功率连续波输出等关键技术,实现了大功率输出。 曲折波导慢波结构 Q波段连续波曲折波导行波管应用于卫星通信、电磁干扰等装备系统中。
电子科技大学 2021-04-10
LZG-XX-HL 系列冷轧管机
该轧机属机电一体化产品。开式工作机架采用了环孔型轧辊对管坯进行长行程轧制,行程长度与德国SKW-75-VMR轧管机相同。 回转送进机构由原来复杂的机械传动改为简单可靠的电气传动完成,由于自行开发的电控系统采用独有技术解决了管坯送进量准确、稳定和回转角度任意可调的难题,大大简化了机械传动的调整、维护,不仅明显降低了机械传动中的刚性冲击和噪音,也大大减少了使用和维护成本。 由于该轧机可实现正、反向无扭回转,出料系统中设置了由水平料槽、卷取机、料筐装置等组成的直线在线卷取系统,实现边轧制边卷取,从而大大节省了车间占地面积。 本轧机是在吸收了国内外SKW―VMR、LG―GH、XЛT 等系列轧管机的基础上采取洋为中用,新老结合的方式,自主研制开发的新型冷轧管机。
北京科技大学 2021-04-11
碳纳米管超级电容器
本项目产品目前超级电容器的致命缺陷,创新构建了以改性的碳纳米管(CNTs)为骨架,在此基础上合成以CNT为纳米茎、片状纳米镍基多元氧化物为枝叶的三维纳米结构材料。由该材料体系结构作为超级电容器正极材料时,CNT形成一维电子“快速通道”,在充放电过程中,电荷能通过CNT快速通道进行超高速交换。而片状纳米镍基氧化物具有巨大的表面积兼有非常强的电化学活性,使其赝电容效应的极具显著。该材料体系结构的另外一重大优点为在电容器制备过程中可以高效地避免纳米材料很容易出现的团聚现象,可以保证该三维纳米结构能获得最大的比表面积,从而使能量密度大大提高。因而,由该纳米三维结构电极材料制备的超级电容器可以获得了非常大的比电容、很大的能量密度和非常高的功率密度;更特别地,充电时间远小于锂离子电池和铅酸电池,在充电设备允许情况下,充电时间可以减小到2分钟以内;循环寿命也高于锂离子电池10倍以上;并且该超级电容器具有非常高的可靠行,制备和使用都非常环保和安全。该项目产品不仅仅可以广泛应用于原有的电容器应用领域,更特别地,可以代替现有巨大市场规模的铅酸电池和锂电池等二次电池而可广泛应用于电动自行车、新能源汽车、电站储能、工业电动运输装置、电动工具、便携式电子设备、通讯基站的备用电源、军事装备(单兵备用电源、瞬时大推力陆用装备、无人机、空间飞行器等)等,具有千亿级的市场规模。 技术指标: ? 能量密度:30-80Wh/kg(目前商业超级电容器的最高仅为8Wh/kg) ? 功率密度:2-20kW/kg ? 充电时间:小于5分钟 ? 循环寿命:大于5000次 项目产品的技术和性能优势: ? 超大的电容量:比传统电容器容量高6个数量级,比现有商业化的超级电容器的比能量高10倍,已经超过铅酸电池的能量密度。 ? 超高功率:比锂离子电池的功率密度高两个数量级以上。 ? 充电速度快:比锂离子电池快10倍以上。 ? 更长的充放电循环使用寿命:比锂离子电池的寿命高1个数量级以上。 ? 具有免维护:可随时浅充、满充和过充电、浅放电、全放电,对电池不会损害,无记忆效应。 ? 高可靠性:超级电容器从生产至使用过程中,均不会出现锂离子电池爆炸问题,即使在严重挤压和高温下也是安全可靠的。 ? 环保无污染:从生产、使用到报废回收,均不存在污染,是典型的绿色产品。 ? 生产成本低,生产工艺兼容性好:电极材料的制备工艺兼容常规材料的制备工艺;电容器的制备工艺可以完全兼容锂离子电池的生长设备,但工艺要求更加简单。
电子科技大学 2021-04-10
Q波段连续波曲折波导行波管
曲折波导行波管是传统螺旋线和耦合腔行波管的折中,具有较宽的工作带宽和较大的功率容量,在毫米波和太赫兹频段具有独特的优点。为了进一步提高器件的性能,研制了新型慢波结构,以及毫米波段新型慢波结构真空电子器件。研制成功的Q波段连续波曲折波导行波管突破了高效率曲折波导慢波结构设计、加工与装配、大电流密度电子枪、大功率连续波输出等关键技术,实现了大功率输出
电子科技大学 2021-04-10
首页 上一页 1 2
  • ...
  • 28 29 30
  • ...
  • 70 71 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    64届高博会于2026年5月在南昌举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1