高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
基于组学技术的黄酒酿造关键技术与装备的创新及应用
深入解析黄酒酿造机理并且创新生产技术与装备,是黄酒产业可持续发展 的必由之路。项目围绕如何科学评价黄酒麦曲质量及产品感官体验、如何高效生产优质麦曲、如何提高产品感官体验等关键技术难题等,本项目完成了基于 组学技术的黄酒酿造关键技术与装备的创新及应用。 创新要点 建立了黄酒麦曲及酒醪发酵机理解析方法,阐明酿造过程的微生物驱动力。解析了液化力、酸性蛋白酶活力、酒化力等活力形成的关键微生物,高级醇及生物胺形成代谢途径及关键微生物;通过风味组学技术解析黄酒风味物质形成及变化过程;通过培养组学技术证明微生物是麦曲活力、黄酒风味的主要来源;发现氧气浓度、温度、湿度是麦曲微生物群落结构形成的核心驱动力。全面系统地解析麦曲的各项指标,针对传统麦曲制作中环境依赖、生产效率低、品质不稳定等问题,在已有机械化制曲(国家技术发明奖成果)的基础上首次开发了智能化精准制曲技术与装备。构建了黄酒产品风味轮,阐明了关键风味物质的最适浓度范围。证明β-苯乙醇、异戊醇、异丁醇、组胺、苯乙胺以及酪胺等高级醇和生物胺是影响黄酒醉酒和醒酒的关键化合物,建立了适用于不同黄酒酵母亚株及酿造工艺的高级醇调控方法。
江南大学 2021-04-13
专家报告荟萃⑤ | 谭建荣院士:新质生产力与智慧城市 关键技术与发展趋势
新质生产力是推动经济高质量发展的重要驱动力。新质生产力可以理解为新一代信息技术牵引的生产力,信息技术不仅改变了人类的生产方式、生活方式、思维方式和学习方式,也对职业教育方式产生了深远影响。
中国高等教育博览会 2024-12-10
超特高压电网继电保护关键技术研究及应用
研究背景 超特高压电网具有电压等级高,输电容量大,输送距离远,覆盖范围广等特点,电网故障带来的系统安全影响更加严重。超特高压系统故障后的暂态特征及继电保护与控制装置的配合关系复杂,超特高压工程带来的继电保护新问题对传统继电保护配置提出了更高的标准和要求。因此研究超特高压电网继电保护新原理是当前超/特高压电网建设的重大课题。 主要成果 构建了超特高压系统实时数字仿真系统(RTDS)模型,揭示了超特高压系统故障机理及其电磁暂态特征。在超特高压继电保护新原理方面取得了多项重大的科研成果,如:提出dR/dt振荡闭锁原理,解决了电力系统振荡过程中距离保护容易误动的难题;提出“按相补偿”方法,改革了接地阻抗继电器的接线方式,有利于阻抗选相和距离保护的快速动作;提出“虚拟电流”的构成方法,解决了母线保护的故障判别及TA饱和、断线的判别难题;提出基于电压回路方程的变压器保护新原理,解决了励磁涌流引起差动保护误动的难题等。研究开发的微机保护、继电保护测试仿真系统、变电站自动化系统、发变组保护系统及故障录波装置等均处于国际领先水平。 学术影响 研究团队在20世纪80年代初研发了我国第一台微机继电机保护装置,而后研发的分层、分布式变电站综合自动化系统率先在西电东送工程的首个500kV变电站投入应用;1000kV线路保护及变电站自动化系统也成功投运;依托研发技术创建的四方公司已成为我国二次设备三大制造商之一,年产值超过20亿元。相关研究成果已成功应用于实际电网中,先后2次2国家级科技进步二等奖,取得了重大经济和社会效益。
华北电力大学 2021-02-01
大型高精度数控拉削装备关键技术与产业化
针对国内拉削装备在加工效率、加工精度和表面质量等关键性能指标与国际水平存在较大差距,以及智能制造技术发展带来的未来巨大市场需求空间,在国家中小企业创新基金、国家重点新产品、国家科技部科技人员、浙江省重大科技专项等项目的支持下,通过产学研合作方式,对拉削方式与机床结构、挤光拉削集成工艺与设备、工作台及刀座安装结构设计与工艺适应性、数控拉削装备CPS 多领域统一建模与优化设计、拉床专用数控系统软硬件等关键技术进行了深入的研究。研发了伺服驱动工件移动拉削工艺和"一挤光两拉削"的三工位加工工艺,研制了共底座双立柱多工位机床、双工位工件移动式立式外拉床和自动挤光拉削专用机床,提高了拉削效率和精度;设计了可承载侧向重切削力的转位工作台、双工位液控翻转工作台以及子母刀座液压锁紧装置,减少了上下料和换刀的辅助时间;研制了多工位协调优化的控制系统和工件在线检测装置,提高了拉削过程的稳定性和自动化程度;开发了CPS 多领域统一建模与优化设计技术,支持数控拉削装备的综合分析和优化。
杭州电子科技大学 2021-05-06
绿藻资源的生物转化关键技术研发及产业化应用
项目成果/简介:以我市丰富的绿藻生物质资源(浒苔、石莼)为主要研究对象,针对藻体胞壁特性、多糖结构、理化质构特性及生物活性进行系统研究,探索出一系列具有自主知识产权的绿藻生物工程技术,攻克了海藻温和高效转化关键技术,率先实现绿藻综合利用及其产品的成果转化与产业化推广,实现生物乙醇、精准生物肥、绿藻多糖等农用制品的规模化生产,经济效益显著。系统性阐明了绿藻糖链分子结构、理化性质、生物学功能及其空间定量构效关系,首次构建绿藻多糖工具酶系并明晰酶多位点催化与调控机制。创新性建立了绿藻资源的生物转化关键技术,突破了藻体温和破壁液化与高效提取转化技术瓶颈,开发了具有自主知识产权菌株的绿藻工具酶的液体高通量发酵与规模化制备技术。构建基于计算机在线智能控制的硫酸鼠李低聚糖酶法精准制备技术、人工智能神经网络下的糖链构效实时预测系统、稳定性叶绿素制取以及非酸温和预处理乙醇转化技术,开拓了绿藻资源高值化综合利用的新领域。项目阶段:工业化生产阶段效益分析:浒苔(Enteromorpha prolifera)和石莼(Ulva lactuca)是我国黄海、东海最主要的绿藻资源,同属于绿藻纲、石莼目,具有良好食用和药用价值,(本草纲目、临海异物志等),在我国东南沿海养殖量均在10万吨以上。我国黄海海域自07年以来连续10年暴发绿潮浒苔,生物量高达1000万吨每年。将这类大型生物质资源合理利用并高值转化,不仅有助于环境保护,而且会带来显著的经济效益。项目开发产品包括绿藻多糖工具酶、硫酸鼠李低聚糖、稳定性叶绿素、农用精准生物肥、功能性饲料添加剂、新型植物病害生物防治等生物制品。在农用制品领域实现绿藻精深加工的成果转化与产业化推广,开拓了我国海藻利用范围,提升产业整体技术水平,市场预期前景广阔。知识产权类型:发明专利 、 软件著作权知识产权编号:ZL2012102016043 ZL201410298678.2 ZL2013102784589 ZL2012101066863技术成熟度:通过中试技术先进程度:达到国内领先水平成果获得方式:独立研究获得政府支持情况:无
中国海洋大学 2021-04-11
正交多载波调制太赫兹宽带无线通信关键技术研究
研究太赫兹宽带无线通信系统中基于小波包变换的正交多载波 调制、峰均比抑制、信道编码以及利用压缩感知和凸优化的新型信道 估计等关键技术。构建太赫兹宽带无线通信系统基带处理实验平台, 用 FPGA 硬件验证具有上述关键技术的基带系统,并对其性能做出评 估。探索出一种更加适合于太赫兹通信系统的新理论和新方法,不仅 为具有全新通信方式和频谱管理模式的太赫兹无线通信技术提供新 的解决方案,也能为其它宽带高速无线通信技术提供有效的方法。
南开大学 2021-04-11
工业污泥制生物燃气关键技术装备与产业化示范
项目背景是北京市燃气紧缺,日缺口最多达800万立方米;北京市大力推广市政天然气管网入村工程;污水处理产生的大量污泥造成了严重的环境污染;北京2014年工业污泥产量超过100万吨;污泥是城市水处理厂的伴随产物,随着社会文明的进步以及环保水平的提高,污水处理能力和处理量也在逐年增长, ,污泥的处理处置问题已成为世界性的课题。 目前国内污泥的处理处置率很低,主要是填埋和农用,也有一部分进行焚烧处理,而这些处理方式均会导致不同程度的二次污染问题。污泥热解技术具有可回收能源 和有用物质、技术不复杂、气体能源产品可不需要储存、对不同的物料成分可以灵活运行等优点。 项目创新点在于太阳能干燥技术实现污泥干燥和减量化,有低能耗、绿色环保的优势。污泥热解-气化工艺及关键设备循环流化床均系自主开发,具有自主知识产权,可实现污泥所蕴含的化学能高效转化为生物燃气。污泥热解-气化工艺主要产品系生物燃气,联产灰分和中压蒸汽。污泥热解-气化工艺实现污泥中灰分无害化利用制建材并回收重金属。污泥热解-气化工艺实现废物零排放,原子经济性高。 本技术使用固定床反应器,以制备气体燃料为目的,对城市污水处理厂的污泥进行了热解资源化研究。以污泥为原料进行了热解工艺开发,考察不同反应条件对热解效果的影响。得出在合适的操作条件下,污泥热解制备气体燃料最佳的反应条件。此时,气体产率达35%,所得气体中可燃组分H2、CH4和CO的总含量达到了60% ,产气热值为8039.77kJ/m3。对500℃时生成的焦油进行了成分分析,发现焦油中N和O含量较高,若用于燃烧可能会产生较多的二次污染物。 分别用干污泥和湿污泥与生物质混合,进行共热解技术开发。结果发现,当干污泥中掺混50%时,能有效提高污泥热解的气体产率。湿污泥与生物质进行混合热解时, 随混合物中生物质比例的增加,温度的增加,气体产率、气体热值逐渐增加。对污泥热解残渣进行了水蒸气气化反应。分别改变温度、固相停留时间、水蒸气流量和 催化剂等条件,考察其对气化结果的影响。得出污泥热解残渣水蒸气气化制取富氢燃气的最佳条件。
北京化工大学 2021-02-01
挥发性有机污染物 VOCs 处理系列关键技术与设备
本项目包括三大核心技术: 1、强制冷凝 VOCs 废气处理设备,创造性地将强制换热技术改造后应用于 VOCs 强制冷凝处理工艺中,针对高浓度有机废气,回收经冷凝的 VOCs 物质,同时回收废气中的温度生产热水。设备内表面均采用实验室自行研发的特殊拒油涂层处理,以防止有机物质对冷凝器的污染,提高冷凝装置稳定运行效率并降低设备维护成本。 2、开发的光催化氧化剂和附着技术 克服纳米光催化剂易团聚、易流失的弊端,开发出新型快速的光催化剂负载技术,能够大大推进光催化剂在废水、废气中的实际应用,负载材料廉价易得,加工方便,寿命长,具有巨大的比表面积,能够在吸附 VOCs 物质的同时,直接发生光催化反应,将 VOCs 物质完全矿化。 3、开发的高效苯吸收液及分层技术 采用特殊吸收液配方制备能够分层的高效苯吸收液,能够有效地 吸收废气中的苯、甲苯、二甲苯等有毒有害物质,净化 VOCs 废气。吸收的 VOCs 物质能够静置分层,从而能够更快速地富集,方便下一步的回收分离,吸收液可以重复使用。 三大技术可以互相结合为工艺组合,在高浓度有机废气的净化与有价值物质的回收、油烟净化、企业 VOCs 治理等方面具有广阔地应用前景。已成功解决了河北省三家企业的 VOCs 处理与排放问题。
南开大学 2021-02-01
高密度铁基粉末冶金制品制备关键技术研究
针对我国高品质粉末冶金铁基材料制备技术较薄弱的问题,在高品质铁基粉末和高性能铁基制品制备技术方面取得了突破。以 LAP100.29 水雾化铁粉作为高密度低合金粉末基粉,添加母合金粉末、增塑剂经塑化处理后,再添加专用润滑剂和石墨进行混合。首先将水雾化铁粉及合金粉末进行粒度搭配,提高堆积密度;然后通过粉末结化处理,提高混合粉末的流动性、合金成分均匀性;接着通过粉末塑化处理,改善铁粉颗粒整体塑性,从而获得了具有高压缩性的专用高密度成形粉末(图 7)。合批粉末的松比为 3.2~3.4g/cm3,流动性≤30s/50g,压缩性≥7.6g/cm3,粉末显微组织如图 2 所示。在混粉阶段,设计制作了 5 吨/h 专用连续式混合装置(如图 6 所示),通过软化处理的复合粉末及粘结剂、石墨等的定量供给和高效混合,合批制成高密度专用粉末,从而实现粘结化粉末的连续、稳定的批量化生产。
北京科技大学 2021-02-01
特色浆果深加工关键技术创新及产业化应用
 浆果富含花色苷、黄酮、酚酸、萜类等多种生物活性成分,具有显著的抗氧化、提高免疫力、缓解视力疲劳等多种生理功能。辽宁省浆果栽培面积全国第一, 草莓、蓝莓、树莓、北五味子、刺五加、蓝靛果等特色浆果产量居国内前列。项目组针对浆果柔嫩多汁、易腐烂、不耐贮运、专用加工装备缺失、高附加值深加 工产品稀少等制约浆果产业发展的瓶颈问题,自 2007 年以来,在国家科技部“十二五”科技支撑计划、农业部公益性行业(农业)科研专项、国家自然科学基金 等项目的支持下,开展了围绕浆果深加工基础理论和应用技术研究,取得了多项技术突破,创立了我国特色浆果深加工关键技术与应用集成体系。 主要技术内容及指标如下:     (1)建立了特色浆果速冻品质评价体系及贮藏技术规程,延长了特色浆果的加工周期。针对浆果加工品种混杂、加工适宜性不明确、采收集中、易腐烂变质、不耐贮运等问题,构建了代表性浆果速冻品质评价体系信息库;研发了低温 冷藏结合 60Coγ辐照、冰温结合钙处理技术,提高了浆果货架品质;开发了浆果前处理、速冻、解冻关键技术,为浆果速冻、冻干产品及装备研发提供理论支撑。    (2)创建了特色浆果深加工及综合利用技术,实现了特色浆果资源的高值化利用。从微观分子角度揭示了单元加工操作过程对浆果典型生物活性物质的影 响规律,为工艺技术开发提供理论支撑;开发了浆果食品稳态化加工、高效提取纯化、致病性病毒检测和指纹图谱掺伪检测技术,实现了浆果资源高效加工及产 品控制;开发了浆果 NFC 果汁、发酵、干制、提取物等 37 种新型浆果制品。相关技术及产品已在 10 多家企业进行推广应用,推进了特色浆果加工产业的快速 发展。     (3)构建了特色浆果及副产物活性物质功能评价体系,明确了其分子作用机理。研究了特色浆果中典型活性物质抗氧化、护肝、辅助降血脂、增强免疫力 等功效及分子作用机制,构建了活性成分功能评价体系,为浆果活性成分应用开创了新领域。     (4)研制了特色浆果速冻、冻干、活性成分制备等专用装备。针对当前浆果 加工关键设备效率低、连续性差、能耗高的问题,研制开发了浆果速冻、冻干、活性成分制备等专用装备,构建浆果高效连续加工生产线。率先将装备在我国 20 余家企业进行了推广应用,部分装备出口到美国、加拿大、韩国、德国等国家,提升了我省浆果食品加工装备的国际竞争力。
沈阳农业大学 2021-05-04
首页 上一页 1 2
  • ...
  • 40 41 42
  • ...
  • 707 708 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    64届高博会于2026年5月在南昌举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1