高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
一种小麦抗穗发芽基因TaZFP18及其应用
本发明公开了一种小麦抗穗发芽基因TaZFP18,所述基因包含如SEQ?ID?NO.1所示的核苷酸序列,或包含与SEQ?ID?NO.1序列互补的核苷酸序列,该基因编码CCCH型锌指蛋白18,可作为小麦穗发芽抗感品种的分子标记基因.该小麦抗穗发芽基因TaZFP18为一种新的小麦抗穗发芽主效基因,利用其开发分子标记,可以迅速鉴定小麦是否为穗发芽抗性品种,也为小麦穗发芽抗性育种提供了新的基因资源.
安徽农业大学 2021-04-29
一种植物种子发芽及根系观察装置
一种植物种子发芽及根系观察装置,包括支撑架,转动轴,电机,控制系统,种子培养容器;所述种子培养容器为长方体,左右两面和底面为不透明遮光板,前后两面为透明板,上面为不透明遮光种子培养容器盖,所述种子培养容器通过不透明遮光隔挡板分成多个种子培养室,种子培养容器前后两面的底端设置有不透明遮光升降板,所述不透明遮光升降板通过导线与控制系统相连接,所述种子培养容器两端安装有转动轴,所述转动轴通过支撑架支撑,位于支撑架上方,种子培养容器左侧转动轴连接有电机,通过电机带动转动轴,使种子培养容器发生转动,所述电机通过导线与控制系统连接。
青岛农业大学 2021-04-13
中型缆控水下观测机器人
成果简介:小型水下观测机器人(ROV)是一型可以水面遥控水下运动,水 下录像水面呈现的潜水器,水下机器人自身携带高强度水下光源以及高清晰广角 度摄像机。中性浮力、低水阻力、超强拉力、多芯集成的超细柔性脐带缆来实现 水面监控单元与水下机器人之间的数据、电源和视频信号的传输。 136天津大学科技成果选编 技术特点:该微型缆控水下观测机器人采用磁耦合传动技术、直流载波技术、 超细中性浮力凯夫拉缆技术、自动航向保持和定深技术、高效水动力外形设计技 术,平台具有极大的技术先进性。其操作简便简单,便携小巧。 技术指标: 1、高分辨率彩色摄像头,数字变焦与云台控制; 2、3 个磁耦合推进器,方向和速度可调; 3、高亮度 LED 灯组; 4、超细柔性脐带缆; 5、配置深度计和高度计,可实现自动定深操作; 6、配置电子罗盘,自动航向保持; 7、视频与字符叠加,实时状态显示,屏幕菜单操作; 8、数字信号传输,减小信号失真; 9、简易游戏操纵手柄控制; 137天津大学科技成果选编 10、富有美学设计理念的流线型机器造型,静电喷漆外观,硬质氧化水 下机身。 成果水平: 国际领先,已获发明专利 应用范围:微型缆控水下观测机器人通过视频搜索并观察水下目标物,广泛 应用于河坝巡检、失事船只搜救、水下摄影、水上娱乐、水产养殖、江边垂钓、 生态修复和舰船维护等。 市场分析及前景:该平台可以广泛应用于江河湖泊的深度测量测绘,水质监测、 水质取样、大众娱乐,视频获取等,科研做为大众娱乐消费品或者儿童玩具进行 营销,具有广泛的科研、业务和大众消费需求。 主要技术指标:主体长度:600mm 排水量:小于 18kg 最大航速:2m/s 下潜深度:200 米 投资规模:生产线、装配车间等需要大约 100 万的投资。 合作方式:技术转让,总价值 200 万元。 19 透明海洋-智能化信息技术架构 20 透明海洋-远距离大数据量海洋通信 21 水下激光通信技术 22 多维度海洋探测系统 23 海洋浮标自动监测系统 24 海洋物联网技术 25 海底淤泥微生物燃料电池 26 重要海洋微生物(微藻)活性产物工程化技术研发
天津大学 2021-04-11
微型缆控水下观测机器人
成果简介: 缆控水下观测机器人(ROV)是一型可以水面遥控水下运动,水下录像水面 呈现的潜水器,水下机器人自身携带高强度水下光源以及高清晰广角度摄像机。 中性浮力、低水阻力、超强拉力、多芯集成的超细柔性脐带缆来实现水面监控单 元与水下机器人之间的数据、电源和视频信号的传输。 技术特点:该微型缆控水下观测机器人采用磁耦合传动技术、直流载波技术、 超细中性浮力凯夫拉缆技术、自动航向保持和定深技术、高效水动力外形设计技 术,平台具有极大的技术先进性。其操作简便简单,便携小巧。 技术指标: 1、高分辨率彩色摄像头,数字变焦与云台控制; 2、3 个磁耦合推进器,方向和速度可调; 3、高亮度 LED 灯组; 4、超细柔性脐带缆; 5、配置深度计和高度计,可实现自动定深操作; 135天津大学科技成果选编 6、配置电子罗盘,自动航向保持; 7、视频与字符叠加,实时状态显示,屏幕菜单操作; 8、数字信号传输,减小信号失真; 9、简易游戏操纵手柄控制; 10、富有美学设计理念的流线型机器造型,静电喷漆外观,硬质氧化水下机 身。成果水平:国际先进 应用范围:微型缆控水下观测机器人通过视频搜索并观察水下目标物,广泛 应用于河坝巡检、失事船只搜救、水下摄影、水上娱乐、水产养殖、江边垂钓、 生态修复和舰船维护等。 市场分析及前景:该平台可以广泛应用于江河湖泊的深度测量测绘,水质监测、 水质取样、大众娱乐,视频获取等,科研做为大众娱乐消费品或者儿童玩具进行 营销,具有广泛的科研、业务和大众消费需求。 主要技术指标:主体长度:300mm 排水量:小于 2.8kg 最大航速:2m/s 下潜深度:100 米 投资规模:生产线、装配车间等需要大约 100 万的投资。 合作方式:技术转让,转让价格 200 万。 
天津大学 2021-04-11
微型缆控水下观测机器人
缆控水下观测机器人(ROV)是一型可以水面遥控水下运动,水下录像水面呈现的潜水器,水下机器人自身携带高强度水下光源以及高清晰广角度摄像机。中性浮力、低水阻力、超强拉力、多芯集成的超细柔性脐带缆来实现水面监控单元与水下机器人之间的数据、电源和视频信号的传输。 技术特点:该微型缆控水下观测机器人采用磁耦合传动技术、直流载波技术、超细中性浮力凯夫拉缆技术、自动航向保持和定深技术、高效水动力外形设计技术,平台具有极大的技术先进性。其操作简便简单,便携小巧。技术指标:     1、高分辨率彩色摄像头,数字变焦与云台控制;     2、3个磁耦合推进器,方向和速度可调;     3、高亮度LED灯组;     4、超细柔性脐带缆;     5、配置深度计和高度计,可实现自动定深操作;     6、配置电子罗盘,自动航向保持;     7、视频与字符叠加,实时状态显示,屏幕菜单操作;     8、数字信号传输,减小信号失真;     9、简易游戏操纵手柄控制;     10、富有美学设计理念的流线型机器造型,静电喷漆外观,硬质氧化水下机身。
天津大学 2023-05-12
观测到三维量子霍尔效应
由南方科技大学和中国科学技术大学共同完成的题为“Three-dimensional quantum Hall effect and metal-insulator transition in ZrTe5”的研究论文,实验证实了哈佛大学理论物理学家Bertrand Halperin在1987年给出的关于三维电子气体系中量子霍尔效应的理论预测。南科大物
南方科技大学 2021-04-14
植物观测显微镜 助力植物研究
产品详细介绍   前言:植物病害是严重危害农业生产的自然灾害之一。根据联合国粮农组织估计,全世界的粮食和棉花生产因病害常年损失在10%以上。植物病害不仅可引起农作物产量的减少,而且在一定程度上还严重威胁到农产品的质量安全及其国际贸易。历史上有很多因植物病害的大面积爆发和流行给人类带来重大灾难的事件,著名的"爱尔兰大饥荒",即1845年由于马铃薯晚疫病的严重流行危害而造成"饿殍遍地及流离失所"的重大案例。植物病虫害同样严重威胁人类宝贵的森林资源。林业病虫害被称为无烟的森林火灾,林业专家提醒林业有关部门和林农要加强虫情监测,早发现早防治,把病虫害对林木的危害程度降到最低,以确保森林植被的健康发展。   细菌、真菌和病毒是引起蔬菜、水果、小麦、玉米、水稻、大豆等农作物及林木,花卉等病害的主要原因。这些病害微生物一般通过茎、叶、根系、果实等侵染植物,大部分病害在染病初期虽能较易防治,但一般不易被人察觉,病害一旦发生,防治不仅困难而且效果较差,致使农作物减产,甚至绝收。如何在病害发病初期进行检测和及时防治,对防治病害的发生尤为重要。  3R Anyty研制开发的植物病虫害现场检测设备-----便携式显微镜,产品小巧便携、内置锂电可以突破传统光学显微镜使用空间局限性,在田间林场对病虫害现场检测、现场分析,确认病因,为病虫害防治赢得宝贵时间,将病虫害的危害程度降到最低!  Anyty便携式显微镜3R-WM401PVTV/3R-WM601PCTV,独创显微镜及显示屏无线数据连接,无需任何电脑等辅助设备即可现场检测,显微镜观测的画面直接转化为数字信号,将各种植株上的病表,虫害,病菌,真菌,灰酶等病虫害直接在无线显示屏上成像,快速分析判断各种作物病虫害的种类,确诊病因,对症下药,还可以拍照、录像储存观测数据,为如何防治病虫害及科学用药提供了科学合理的理论依据.产品规格:  ●产品型号:3R-WM401PCTV  ●产品品牌:Anyty(艾尼提)  ●电脑操作系统:视窗XPSP2或Vista或WIN7以上  ●产品接口:USB2.0  ●光学芯片:CMOS35万象素  ●照片象素:720x480,640x480,320x240  ●颜色:24bitRGB  ●光学镜头:双轴27倍&100倍显微镜头  ●手动调焦范围:8毫米到300毫米  ●放大倍数:10倍到200倍  ●自动白平衡.  ●自动曝光  ●光源:内置8个可调暖白发光灯  ●有无偏光\滤光功能:无  ●电源:5V电脑USB电源  ●尺寸:13.5厘米(长)x3.6厘米(直径)  ●无线传输距离:不小于5米(无障碍)  ●锂电池特征:  ●完全充电时间:3小时左右,可持续工作时间:5小时左右,寿命:完全充放电500次。  ●无线功率:10mW  ●4个频道可供切换专用液晶TV显示屏:  显示屏尺寸:3.5TFT-LCD  解析度:960×240分辨率  传输频率:2414MHz.2432MHz.2450MHz.2468MHz(兆赫)  充电时间:3小时  工作时间:2小时  视频大小:2700字节/分钟  外形尺寸:100×70×25毫米  重量:140g
北京爱迪泰克科技有限公司 2021-08-23
一种诱导损伤可观测耗能杆
本发明公开一种诱导损伤可观测耗能杆,包括核心杆和外约束套管;所述核心杆的两端为连接段,连接段之间为耗能段,所述耗能段的横截面小于连接段的横截面,在耗能段表面打磨一段形成诱导损伤段,外约束套管上预留观测窗,其位置与诱导损伤段保持一致。本发明同时具有诱导损伤以及损伤可观测的特点,通过打磨切削耗能段形成诱导损伤段,使得诱导损伤段的累积损伤更严重,先于耗能段发生开裂、甚至断裂破坏,基于上述损伤定位,观测窗可直接观测损伤,同时,观测窗仅需要略大于诱导损伤段,避免了对于外约束套管过大削弱,保证了耗能杆的整体稳定性。本发明能够为耗能杆的震后损伤评估和更换提供依据,具有广阔的应用前景。
东南大学 2021-04-11
对10μeV量级能带变化的实验观测
多体量子系统在强相互作用下会呈现出丰富多彩的新规律。当粒子间库伦势能远大于系统的其他能量时,我们无法再以微扰方式理解粒子间的互动。在特定条件下,多体系统通过粒子间的相互关联将材料能带结构的微小变化放大,从而产生实验可观测的宏观变化。 半导体异质结中的二维自由载流子是研究多体现象的极佳载体。该体系具有极低的晶格缺陷,使得0.1mm的宏观范围内的电子具有可观测的量子相干性。在强磁场环境中,粒子的动能被压缩到具有大量简并的分立朗道能级中。这时该系统的哈密顿算符中仅仅包含了粒子间的库伦相互作用。多体问题的复杂性瞬间呈现在我们眼前:具有相同哈密顿算符的自由电子系统可以自发地呈现出气态、不同固态、不同液态、甚至激子态。 应力应变是调控材料特性的常用方法。压力可以改变材料的晶格常数,从而改变材料的禁带宽度、改变载流子的有效质量、调节导带底在波矢空间的位置或者电子在不同能谷的分布。当前的角分辨光电子能谱(ARPES)实验能够分辨meV的能带结构,而基于多体理论的第一性原理计算能够达到0.1eV的精度。受限于分辨率,静液压对材料能带的精细作用并不为我们所了解。静液压改变了材料的晶格常数,但是并不改变材料的空间对称性、自旋属性、或者角动量属性,因而对物态调控有独特的价值。 2015年,普渡大学的Csathy教授的实验组首次报道了稀释制冷温区的静液压输运测量(Nature Physics 12, 191)。这一实验发现各向同性的静液压会引起GaAs/AlGaAs中的二维电子系统发生各向同性的分数量子霍尔态到各向异性的电荷密度波的相变。我们参考他的实验技术路线,成功实现了电子温度小于40 mK、压力最高20 kbar的极低温静液压测量环境。相比金刚石对顶砧技术,静液压技术尽管能获得的压力低,但是适用于大体积的样品,也便于开展极低温下的输运测量。 利用这一技术,量子中心研究生黄可研究了静液压下的GaAs/AlGaAs异质结二维空穴系统。实验观测到,在各向同性的静液压诱导下,朗道能级填充系数3/2附近的分数量子霍尔态出现了自旋相变。通过对相变规律的分析,作者发现两个由于自旋轨道耦合分裂的朗道能级在高压作用下发生简并,所以空穴具有不同自旋量子数的子能带在静液压作用下发生了相应的微弱变化。该工作利用多体量子态相变研究静液压作用下材料物性发生的10μeV量级的微小变化,高于其他已有的实验探测手段和计算方法。
北京大学 2021-04-11
一种可有效防止种子根系缠绕并便于计数的发芽装
本实用新型提供了一种可有效防止种子根系缠绕并便于计数的发芽装置,包括发芽母盒,所述发芽母盒的内腔底端设有发芽底盘,所述发芽底盘的上端通过盒体放置卡槽与多个发芽子盒相连,所述发芽子盒上均设有种子放置孔和根系生长孔,所述根系生长孔位于种子放置孔的内侧,所述发芽子盒的侧面设有盒体衔接槽,所述盒体衔接槽内连接有扩展盒体。本实用结构简单,能一次性解决发芽率的统计,以及种子根系缠绕问题,发芽板上呈阵列设置孔穴,每个孔穴放入粒种子,便于计算种子发芽率;将发芽板从发芽盒体内取下,可以看到孔穴内每粒种子的根生长情况,在大批量检测中,能节省大量人力、物力,提高工作效率。
青岛农业大学 2021-04-13
首页 上一页 1 2 3 4 5 6 下一页 尾页
热搜推荐:
1
云上高博会企业会员招募
2
63届高博会于5月23日在长春举办
3
征集科技创新成果
中国高等教育学会版权所有
北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1