高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
电供暖智能控制系统
技术成熟度:技术突破 本成套设备,以电供暖的各个电暖气为控制对象,以建筑内不同房间不同区域的取暖温度为控制参数,自下而上,组成了由单片机现场控制器(控制室单独使用PLC控制器)、PLC中间层算法控制器、工控机为上位机构成监控界面的DCS控制系统,从而实现分散控制集中管理的控制系统。此系统的目的在于替换传统水暖系统,利用合理科学的软件算法,实现节能、环保、减排的效果。设备兼具教学、实验、科研及实用的功能。 成果技术特点:本套装置由四个单片机组成现场控制器,一个PLC组成的控制室控制器,与中间层面的S7-300PLC控制系统,以及顶层监控层的工控机装置,统一安装到了一个整体的平台上。此平台便于实地集中实验、研究,也有利于集中编程与项目演示。 图1 设备实物图 图2 为智能控制系统电脑操作界面
吉林建筑科技学院 2025-05-19
AI心理情绪识别系统
AI心理情绪识别系统1.多模态信号采集:人脸动态图像、脑电信号采集、语音情感检测。2.功能模块包含:情绪检测、情绪档案、数据统计、用户管理、系统设置功能模块。3.系统基于情绪心理学相关理论,结合面部表情的二维情感空间分析技术、脑电信号的状态分析、语音的三维情感空间分析三种模态相互融合叠加技术,检测人心理情绪状态,提高其检测准确度。3.    基于摄像头面部情绪识别技术,可以实时分析人体面部所包含的情绪状态。通过非接触式的实时视采用 AI 人工智能学习技术,结合心理学,通过对被测试人员 60秒的测试,能够获取相关心理/心理指标。帮助被测试人员了解自己的心理健康状况,并且引起人们重视心理健康,从而在工作、学习、生活当中提高身心健康。并且通过定期测试,能够获取个体、准确的进行心理危机预警,显示被测人员心理危机测试报告,提醒心理医生重点关注。用户在进行注册登录后,根据语音提示可直接进入测试界面进行情绪识别。点击测试按钮,调整好站立位置,脸部朝向屏幕,人脸录入即可完成测试,测试完成即可生成测试报告并能打印报告。4    基于脑电生物传感器状态检测、实时展示人体脑波原始状态指标以及Delta、Theta、Alpha、Beta、Gamma等8个EEG参数。5.    采用任务态模式进行语音情感分析,测试者按照系统设定的特定语境信息进行朗读来进行情感分析。6.    检测结束后可实时出具“心理生理状态分析结果报告”,其中包括被测试人员信息、检测时间、12维度心理生理情绪数据,包含正面情绪(平衡、自信心、活力、调节水平),负面情绪(攻击性、压力、紧张、可疑),生理参数(抑制、神经质、消沉、幸福指数),以及综合状态指标:专注度、放松度、疲劳指数、焦虑指数、压力指数、抑郁指数等。7.    统计分析:系统自带数据中心的统计功能,可以按单位进行所有检测人员的压力分布图及重点关注人员的信息显示。8.    检测完成后系统自动生成检测报告,检测报告需包含每项参数的检测数据大小、参考范围、异常数据等,以及用情绪参数雷达图、饼状图、直方图、曲线视图等多种表示方法。9.    信息查询功能:管理员可通过多条件查询功能,只需通过任意一项查询条件即可快速查询出与之对应和匹配的测试者信息,以及该测试者的历史测试记录,并可对该测试者的测试记录进行纵向和横向对比,综合分析该名测试者的心理健康状况。9.用户管理端:以管理员身份登录该系统可对用户进行管理。可进行添加用户、删除用户、查询用户、用户信息修改、密码修改、级别权限设置、单位框架搭建、查看用户报告,以及导出、打印用户报告。10.系统具有特定场合模态设置功能,可关闭和开启语音检测功能。11.视频检测时面部框具有信号质量检测功能,通过不能的颜色在面部框进行彩色状态提示,同时具有人脸检测判别功能,比如面部不全、距离较远等识别功能
北京京师慧智科技有限公司 2025-05-22
融创督导巡课系统
北京大智汇领教育科技有限公司 2025-01-09
一种面向视觉监控的自动导航巡逻机器人
随着社会经济的发展,医院、车站、机场等大型场所的规模和数量不断扩大,其保安巡逻 自动化需求将日趋迫切。目前依赖于人力巡逻或CCD定位监控已不能满足夜间保安的要求, 采用保安巡逻机器人实行定时、定点监控巡逻与不间断流动巡逻结合将是目前最佳的解决方 案。 为了实现保安巡逻的各项功能,使系统在总体性能上满足实时性、可靠性和方便性的要 求。远程操作计算机远离移动机器人的工作现场,操作者通过这台计算机实现对机器人的远程 操作控制,其实现的功能有:网络通信、视频的解压缩和显示、非视觉传感器信息的可视化显 示、移动机器人工作状态的显示和接收操作者通过控制设备对移动机器人下达的控制命令。 移动机器人平台由移动机器人信息处理及操作系统、道路识别系统、视频采集系统、非视 觉传感器信息采集系统和伺服驱动系统组成,其中移动机器人上位机系统实现的功能有:网络 通信、视频信息压缩、视频信息识别、非视觉传感器信息的处理、移动机器人的运动规划和运 动控制。本项目创新点如下: (1) 基于区域矢量化道路识别 对车道线进行区域矢量化,并对获取的车道线进行数学分析及建模,用以后续的自动导航 控制。 (2) 基于多信息融合的自动导航 本巡逻机器人自动导航系统采用多信息融合,结合视觉信息和GPS定位。视觉信息用来识 别车道线进行导航,而GPS可以提供必要的导航信息,对视觉信息的不足进行补充。 (3) 巡逻机器人组网及远程控制 巡逻机器人控制系统接入无线网络,可以通过控制端PC对机器人发送指令,使其按所发 送的指令自动到达指定站点。机器人之间应该也能够互相通信,这样才能够及时的避免冲撞以 及交换信息。
华东理工大学 2021-04-11
面向智能交通的计算机视觉产业化关键技术
智能交通是关键在于两方面:智能道路与智能车辆。前者主要目的在于规范 交通秩序,提升道路的通行能力;后者的使命是通过发展通过驾驶辅助系统,最 终实现车辆的无人驾驶。 针对智能道路,团队研发了电子警察。通过装配在城市交通路口的智能一体 相机,电子警察自动抓拍车辆闯红灯和变道等违章行为,通过治理违章规范驾驶 行为。其核心技术在于基于计算机视觉的嵌入式车辆运动分析系统。团队与智能 相机厂商合作,开发了基于达芬奇(DaVinci)平台的嵌入式电子警察产品,并 已成功上市销售数百套。 针对智能车辆,团队研发了交通标识自动识别系统。通过车载视觉智能分析 系统,提前主动定位并识别交通标识,规避违章驾驶。团队与国内领先的无人车 研发机构合作,已参加数届中国智能车未来挑战赛(IVFC),获得了交通标识识 别第一名及总成绩第三名的成绩,并得到了中央电视台等机构的好评。
重庆大学 2021-04-11
机械臂无模型视觉反馈控制及其自适应操作应用研究
一、项目简介 随着科技进步和社会需求的发展,机器人手/臂除了工业生产,也越来越多用于服务人类的其它各个领域,这必然会使机器人承担比工业中更加多样的操作任务,面临更加多变的工作环境。因此,国内外对非结构自然环境下、具备自主操作能力的机器人的研究十分重视。当前,具备视觉感知能力的机器人已被公认为机器人发展的主流趋势,将视觉与机器人操作相融合,是对人类行为的模拟,由此产生的视觉伺服控制方法为机器人自主操作能力的实现带来了新的思路,代表了机器人的先进控制技术,也是促进机器人智能化发展的一个重要驱动。可以预见,未来的视觉系统将会成为机器人名副其实的眼睛,视觉伺服技术在机器人自主操作中将具有不可替代的作用。 视觉伺服利用视觉传感器提供的环境信息对机器人运动进行实时反馈控制,涉及机器人机械几何设计、运动学和动力学、自动控制理论、计算机视觉图像处理和摄像机标定等,是智能机器人领域中具有重要理论意义的研究课题之一。迄今为止,机器人手/臂的视觉伺服方法在太空遥操作、机器人手术、水果采摘、工业装配、焊接、抓取以及微操作等方面得到越来越多的应用。然而,现阶段可实际应用的方案主要面向特定的标定环境、模型参数已知,机器人操作是编码定式的,不具备模型未知条件下的自主操作能力,特别是当面向未来的刚-柔-软体共融机器人时,其柔型结构造成的运动模型及参数的变化与不确定性,必然使现有确定模型的研究方法失效。因此,无模型(目标几何模型,手眼标定模型,机器人运动模型)、非结构环境下的自适应操作对机器人提出了新挑战,是机器人手臂(尤其柔型手臂)视觉伺服控制研究的难点与前沿问题,不断深入对非结构环境下、无模型的机器人手/臂视觉伺服控制的研究具有重要的理论和现实意义。 在非结构自然环境下使机器人像人一样协调自适应操作是当今机器人研究领域的一项尚未实现但又令人感兴趣的研究工作。从理论上看,非结构自然环境下实现机器人柔性操作,就当前研究依靠单一的控制器设计是困难的。因此,本项目借鉴人的手眼协调操作是自适应学习过程,涉及智能进化和行为优化,将随机动态规划理论,结合约束规则与最优化控制,探索一种变参手眼关系,实现机器人在非结构自然环境下的自适应操作。 二、前期研究基础 研究团队一直致力于机器人视觉反馈控制的研究。在基础理论研究上,针对无标定视觉伺服控制方案与设计,均提出了一些新型方法,有扎实的理论基础和知识积累,并不断跟踪和深入在无模型视觉伺服控制的方面研究和前沿问题。目前,已经着手在无模型视觉伺服的可靠性、稳定性控制方面做了充分的探索工作:针对机器人无标定全局稳定操作问题,研究了一种鲁棒卡尔曼滤波(RKF)合作Elman神经网络(ENN)的全局稳定视觉伺服控制方法;提出了一种基于网络辅助尔曼滤波状态估计的无标定视觉伺服方法,提高伺服系统的鲁棒性。同时,立足机器人发展前沿,建立了多模特征深度学习抓取系统,在无结构环境下实现了机器人智能抓取与定位。 已发表的与项目相关的主要论文有: [1] 仲训杲,徐敏,仲训昱,彭侠夫.基于多模特征深度学习的机器人抓取判别方法.自动化学报,2016,7(42), pp:1022-1029. (EI) [2] Xungao Zhong, Xunyu Zhong and Xiafu Peng. Robots Visual Servo Control with Features Constraint Employing Kalman-Neural-Network Filtering Scheme. Neurocomputing, 2015, 151(3), pp:268-277 (SCI)  [3] Xungao Zhong, Xunyu Zhong and Xiafu Peng. Robust Kalman FilteringCooperated Elman Neural Network Learning forVision-Sensing-Based RoboticManipulation with Global Stability. Sensors, 2013, 10(13), pp:13464-13486. (SCI) [4] Xungao Zhong, Xiafu Peng, Xunyu Zhongand Lixiong Lin. Dynamic Jacobian Identification Based on State-Space for Robot Manipulation. Applied Mechanics andMaterials, vols. 475-476 (2014)pp: 675-679.(EI) [5] Xungao Zhong, Xiafu Peng, Xunyu Zhong and Xueren Dong. Multi-Channel with RBF Neural Network Aggregation Based on Disparity Space for Color Image Stereo Matching. IEEE 5th International Conference on Advanced Computational Intelligence (ICACI), 10(2012) PP:620-625. (EI) [6]XUNGAO ZHONG, XIAFU PENG, XUNYU ZHONG. NEURAL-BAYESIAN FILTERING BASED ON MONTE CARLO RESAMPLING FOR VISUAL ROBUST TRACKING. Journal of Theoretical and Applied Information Technology, 2013, 2(50), pp: 490-496. [7] Xungao Zhong, Xiafu Peng and Xunyu Zhong. Severe-Dynamic Tracking Problems Based on Lower Particles Resampling. TELKOMNIKA Indonesian Journal of Electrical Engineering. 2014, 12(6), pp:4731-4739. [8] Xunyu Zhong, Xungao Zhong and Xiafu Peng. Velocity-Change-Space-based Dynamic Motion Planning for Mobile Robots Navigation. Neurocomputing. 2014, 143(11), pp:153-163. (SCI) [9] Xunyu Zhong, Xungao Zhong, Xiafu Peng. VCS-based motion planning for distributed mobile robots: collision avoidance and formation. Soft Computing,2016,5(20), pp: 1897-1908. (SCI) [10] 仲训杲,徐敏, 仲训昱, 彭侠夫. 基于雅可比预测的机器人无模型视觉伺服定位控制, 控制与决策, 已在线发表, 2018. [11] 仲训杲,徐敏, 仲训昱, 彭侠夫. 基于图像的机器人非标定视觉反馈控制全局定位方法, 厦门大学学报(自然科学版), 已录用, 2018. 三、应用技术成果 (一)基于多模特征深度学习的机器人抓取判别 研究了多模特征深度学习及其在机器人智能抓取判别中的应用,该方法针对智能机器人抓取判别问题, 研究多模特征深度学习与融合方法. 该方法将测试特征分布偏离训练特征视为一类噪化, 引入带稀疏约束的降噪自动编码 (Denoising auto-encoding, DAE), 实现网络权值学习; 并以叠层融合策略, 获取初始多模特征的深层抽象表达, 两种手段相结合旨在提高深度网络的鲁棒性和抓取判别精确性. 实验采用深度摄像机与 6 自由度工业机器人组建测试平台, 对不同类别目标进行在线对比实验. 结果表明, 设计的多模特征深度学习依据人的抓取习惯, 实现最优抓取判别, 并且机器人成功实施抓取定位, 研究方法对新目标具备良好的抓取判别能力. (二)无标定视觉伺服解决方案及其机器人操作应用 研究了无标定视觉伺服方法及其在机械臂任务操作中的应用。首先提出视觉伺服目标:假设机器人或者摄像节的模型参数未知或者部分未知,视觉伺服的目标是使用摄像节作为传感器,引导机械臂运动,使当前图像特征收敛到期望图像特征,从而完成定位或者跟踪的任务。 手眼协调关系描述。关节图像雅克比矩阵定量描述了机械臂关节变化引起图像特征变化,它是关节-图像映射的局部线性化矩阵。 建立图像雅克比的在线估计器。将关节图像雅克比矩阵的每一个元素作为辅助系统的状态,建立辅助系统的状态方程;摄像机提取到的图像特征作为测量值,建立辅助系统的观测方程。根据Kalman滤波器理论,我们设计了对关节图像雅克比的在线实时估计算法。 构建基于图像矩的目标函数。为了避免传统的基于点特征的缺陷,例如点特征的标记、提取与匹配过程复杂且通用性较差问题。构建基于图像矩的图像特征向量完成视觉伺服任务,来提高视觉伺服系统的稳定性和可靠性。 四、合作企业 厦门万久科技股份有限公司是一家集销售、软件研发、技术服务、加工技术整合为一体的高新技术企业。目前公司的经营范围涉及CNC软件开发及数控系统销售、CNC控制零件销售及专业维修;工艺优化、机台升级与技术改造、工程配电与软件优化、专用机控制系统开发、多轴机的设计与开发、机台精度检测与校正优化服务等。公司是国际知名生产制造企业——富士康的产品供应商和技术服务商。    
厦门大学 2021-04-11
一种图像中不同区域视觉显著程度的检测方法
现代高速计算机的计算能力已达到惊人的程度,但计算机视觉系统却无法指导诸如过马路之类对  人来说非常简单的视觉任务。本成果模拟人眼选择性关注视觉场景中显著变化区域的模式,提出一种  图像中不同区域视觉显著程度的检测方法,从而达到提高计算机图像分析效率的目的。
北京工业大学 2021-04-13
一种图像中不同区域视觉显著程度的检测方法
北京工业大学 2021-04-14
面向大规模图像视觉特征的多维倒排索引与快速检索算法
本发明公开了面向大规模图像视觉特征的多维倒排索引与快速检索算法,包括:利用图像的视觉特征训练增强型残差量化所需的多层码书,并利用所训练的码书构建多维倒排索引;根据已训练完成的码书,对图像视觉特征进行量化和编码,同时根据计算得到的编码将其插入到倒排索引中对应的倒排列表;利用查询图像视觉特征对所构建的多维倒排索引进行查询,获得查询候选集;利用自适应超球体过滤对查询候选集进行优化,对过滤后的查询结果排序,从而完成图像视觉特征的检索。本发明的方法通过对图像特征进行量化和编码,提高图像特征的量化效率;利用所生
华中科技大学 2021-04-14
一种基于机器视觉的浮法玻璃缺陷在线检测装置
本发明公开了一种基于机器视觉的浮法玻璃缺陷在线检测装置。光源为红色发光二极管,光源柜位于被测玻璃下方,光源柜顶部狭缝与玻璃的行进方向垂直。摄像机组位于被测玻璃上方,控制柜内设置有客户机组、工业交换机和信号滤波器。客户机组设置有 n 台带图像采集卡的客户机,客户机分别与摄像机组中的摄像机连接,信号滤波器分别与光电编码器和各客户机相连,光电编码器安装在被测玻璃上。打标机位于被测玻璃的上方,打标机与服务器相连,服务器控制打标机工作,并将缺陷信息录入产品缺陷数据库,并输出统计报表。本发明装置能够对浮法玻璃生
华中科技大学 2021-04-14
首页 上一页 1 2
  • ...
  • 46 47 48
  • ...
  • 585 586 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    64届高博会于2026年5月在南昌举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1