高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
鼎易数影仪\视频展台\高拍仪X500B
产品详细介绍 功能特点: 500万像素,1秒A3大幅面扫描,并自动存储,多语言OCR识别,USB供电环保节能。 产品卖点: 1.1秒快速扫描,有效提升办公效率    采用拍摄式采集的方式,将扫描单张A3文件时间缩短到1秒以内,为现代办公提升效率。 2.高清数码镜头,满足精细化扫描需求    500万像素高清镜头,满足特殊行业的精细化扫描需求,提供清晰准确的扫描效果。 3.多语言OCR识别,节约办公时间    软件具有文字识别功能,可识别图片里的文字,转化为word、excel文档。 4.打破介质局限,立体实物轻松扫描    对扫描介质无特殊限制,能对纸张、证件、照片甚至立体实物进行扫描录入及即时投影。 5.强大操作软件,特色智能功能应用    除快速扫描、识别等基本功能外,软件更具备“自动去黑边纠偏”“自动感应拍摄区域”两大智能功能。 6.USB供电方式,低碳节能绿色办公    采用USB供电方式,无需其他外接电源,大幅减少电力耗费,低碳节能创造绿色办公环境。 技术规格: 型号: X500B 拍摄范围: A4(210X297mm) 像素: 2592X1944 扫描图片格式: JPG、TIF、BMP、PNG 输出文档格式: PDF、DOC、TXT 录像格式: AVI 光源补偿: LED灯 图像控制/编辑:亮度、曝光度、锐度、色彩、增益控制、去黑边、色调、图像剪切 展开尺寸: 337X245X128mm 折叠尺寸: 337X100X128mm 净重: 0.78kg 接口类型: USB2.0 光感元件: CMOS 图像色彩: 24位
深圳市兴鼎业科技有限公司 2021-08-23
SDY-08D家用电器音视频培训考核设备
产品详细介绍  SDY-08D家用电器音视频培训考核设备 电视实训考核台是用于液晶电视和CRT彩色电视机的实训与考核,液晶显示器要求为32寸,所彩机型32寸液晶电视,故障点设置不少于32个,彩电采用25吋CRT电视作为考核平台。电视实训电路板增设了故障点考核装置。故障点为手动设置方式,减少了对电路的影响,画面清晰。适用于家用电子维修技师的实训与考核。
上海上育科教仪器有限公司 2021-08-23
美国Lake Shore 218温度监视器台式监控器低温监测仪表 8个通道
产品介绍: 美国 Lake Shore 218是功能丰富的温度监视器8个传感器输入,几乎可以与任一个二极管或电阻型温度传感器配合使用。连续显示所有8个通道,显示单位是K, °C, V 或 Ω。测量输入是按低温测量的要求设计的,但是监视器的低噪音、高分辨率、宽量程范围等特点,使其应用在非低温的环境中也是理想的。  218温度监视器台式监控器低温监测仪表 主要特点 • 使用合适的传感器,操作时的*低温度可以达到1.2K • 8个传感器输入 •支持二极管和电阻型传感器 • 连续8个输入显示为K, ℃, V 或 Ω为单位的读数 • IEEE-488 和 RS-232C 接口,模拟输出和报警继电器 • 有2个型号可供选择:218S 和 218E • CE认证  218温度监视器台式监控器低温监测仪表   传感器输入显示 美国 Lake Shore 218温度监视器具有八个恒流源(每个通道一个),可以与多种传感器配合使用。输入设置可以通过前面板完成或通过计算机接口完成。监视器的八个通道分为两组,每组中的四个通道必须连接一种类型的传感器(比如四个通道全都是铂电阻传感器,或者全都是硅二极管传感器)。 两个高分辨率的A / D转换器可以提高218温度监视器的更新速率。因为不需要等待电流源转换,所以218比其它品牌的扫描式监视器能更快地读取到温度读数。218温度监视器每秒可读取到16个温度读数,也就是说每个通道每秒可读到2个温度读数。还可以关掉部分输入通道的方法来获得更高的读数率。   温度曲线 美国 Lake Shore 218温度监视器含有标准的硅二极管和铂电阻传感器的温度曲线。它每个通道可以储存一条200点的用户自定义曲线,所以可以支持多种传感器类型。 Lake Shore校准的CalCurves™同样可以被存储为用户曲线。内置的SoftCal™1算法也可以将DT-470系列二极管和铂电阻的温度曲线进一步改善,做为用户曲线储存到218 中。 Lake Shore用在硅二极管和铂电阻传感器上的SoftCal™ 算法,对于用户希望得到比标准曲线更高的精度,但并不需要传统的标定的情况是很好的解决方案。 SoftCal™ 算法采用几个已知的温度参考点点来修正传感器的标准曲线,从而达到更高的精度。 接口 美国 Lake Shore 218温度监视器可获得的计算机接口有并口(IEEE-488,仅218S有此接口)和串行计算机接口(RS-232C)。每个输入都有高、低值报警,并且提供锁定和非锁定操作。218S中的八个继电器可用于故障报警或执行简单的开关控制。218S包括两个模拟电压输出,用户可以选择输出数据的比例和数据进行输出,包括温度、传感器单位、或线性方程的结果。在手动控制下,模拟电压输出也可以作为一个电压源用于其它应用程序。   显示 美国 Lake Shore 218温度监视器八个显示位置的内容用户可配置的。读出的数据源是温度单位、传感器单元和数学*算函数结果。为使用方便,输入的通道号和数据源一直显示在前面板。显示的数据每秒更新两次。 1 Lake Shore SoftCal™的校准对于硅二极管和铂电阻传感器需要更高精度时是比较好的解决方案,但是这种校准并不是真正的传统意义上的校准。SoftCal校准是采用标准曲线的可预测性来改善单独传感器在几个已知温度参考点的精度。  
北京锦正茂科技有限公司 2022-11-03
HEVC高效视频编解码器及图片编解码器
项目简介 当今社会,随着多媒体技术的不断发展,图片视频已经成为了人们获取信息的重要来源,图片视频的数据量出现爆发式地增长。面对大量的图片视频信息,如何高效的存储和传输成为一个重要的问题,在这样的背景下,HEVC视频编码标准应运而生。HEVC(High-Efficiency VideoCoding)是ISO/IEC和ITU-T联合制定的最新视频编码标准,该标准进一步优化了前代视频编码标准H.265,并进一步创新,最终在相同的主观质量下比前代标准H.264提高一倍的压缩率。 HEVC视频编码标准虽然在相同的主观质量下提高了一倍的压缩率,与此同时编码过程中所需的计算量大幅提高。过高的计算量严重的阻碍了HEVC标准产业化的过程。本项目通过一系列技术高效的实现了HEVC视频编码标准下的编解码器以及图片编解码器。项目设计了快速率失真优化框架、高性能并行框架以及高效全平台支持框架,生产出高效的编解码器。 本研究室在视频编码技术上有多年的积累,在率失真优化上有深厚的理论基础。同时,在视频编码标准的实现上,本实验室也积累的丰富的经验,设计并实现了高效的HEVC视频以及图片编解码器。应用范围 虽然目前H.264仍然是主要的视频编码标准,但是HEVC必将很快取代H.264的行业地位。随着高清视频的普及,以及超高清视频的出现,如何在保证视频质量的情况下,提高压缩率减少成本,成为产业界必须要考虑的问题,HEVC视频编码标准必将得到广泛应用。项目阶段 本实验室在视频图像编解码器上进行了多年的研究,对于编解码的过程进行了透彻的分析,设计出快速的率失真最优化模型以及高效的并行框架,最终开发出高效视频编解码器Lentoid以及高效图像编解码器LentP。经过测试对比,Lentoid和LentP与市场同类产品相比均具有可观优势。目前本项目已经完成原型系统开发,有待进一步完善。知识产权 本实验室在高效编解码器的上进行了大量的研究,在编码快速码率失真优化RDO算法,高性能并行框架以及高效解码方案上的研究成果均已在相关领域的顶级会议以及期刊上发表,同时申请了大量的专利。合作方式 合作开发、技术转让、技术许可。
北京大学 2021-04-11
HEVC高效视频编解码器及图片编解码器
当今社会,随着多媒体技术的不断发展,图片视频已经成为了人们获取信息的重要来源,图片视频的数据量出现爆发式地增长。面对大量的图片视频信息,如何高效的存储和传输成为一个重要的问题,在这样的背景下,HEVC视频编码标准应运而生。HEVC(High-Efficiency VideoCoding)是ISO/IEC和ITU-T联合制定的最新视频编码标准,该标准进一步优化了前代视频编码标准H.265,并进一步创新,最终在相同的主观质量下比前代标准H.264提高一倍的压缩率。 HEVC视频编码标准虽然在相同的主观质量下提高了一倍的压缩率,与此同时编码过程中所需的计算量大幅提高。过高的计算量严重的阻碍了HEVC标准产业化的过程。本项目通过一系列技术高效的实现了HEVC视频编码标准下的编解码器以及图片编解码器。项目设计了快速率失真优化框架、高性能并行框架以及高效全平台支持框架,生产出高效的编解码器。 本研究室在视频编码技术上有多年的积累,在率失真优化上有深厚的理论基础。同时,在视频编码标准的实现上,本实验室也积累的丰富的经验,设计并实现了高效的HEVC视频以及图片编解码器。本实验室在视频图像编解码器上进行了多年的研究,对于编解码的过程进行了透彻的分析,设计出快速的率失真最优化模型以及高效的并行框架,最终开发出高效视频编解码器Lentoid以及高效图像编解码器LentP。经过测试对比,Lentoid和LentP与市场同类产品相比均具有可观优势。目前本项目已经完成原型系统开发,有待进一步完善。虽然目前H.264仍然是主要的视频编码标准,但是HEVC必将很快取代H.264的行业地位。随着高清视频的普及,以及超高清视频的出现,如何在保证视频质量的情况下,提高压缩率减少成本,成为产业界必须要考虑的问题,HEVC视频编码标准必将得到广泛应用。
北京大学 2021-04-11
一种基于运动颜色关联的视频图像显著性检测方法
本发明公开了一种基于运动颜色关联的视频图像显著性检测方 法,包括:获得视频图像的静态显著性图;提取场景的光流向量场;对光流向量场进行初步分类并抛弃最大分类区块;将视频图像从 RGB 颜色空间转换到 HSV 颜色空间;根据 HSV 颜色空间 H 分量中对应颜 色在输入图像中出现的频率,生成颜色直方图;针对光流向量场有效 分类区块中的每个向量,将其范数投射到颜色直方图的相应区间中去, 得到每个颜色区间的运动尺度变量;得到每种颜色的运动显著性值并 投影到原图像生成运动显著性图;将运动显著性图与静态显著性图相 加得到最终显著性图。本发明的方法可以有效地将运动特征纳入显著 性考虑范围,在现有的运动视频测试集上能取得优于传统方法的结果。
华中科技大学 2021-04-11
HEVC高效视频编解码器及图片编解码器
当今社会,随着多媒体技术的不断发展,图片视频已经成为了人们获取信息的重要来源,图片视频的数据量出现爆发式地增长。面对大量的图片视频信息,如何高效的存储和传输成为一个重要的问题,在这样的背景下,HEVC视频编码标准应运而生。HEVC(High-Efficiency VideoCoding)是ISO/IEC和ITU-T联合制定的最新视频编码标准,该标准进一步优化了前代视频编码标准H.265,并进一步创新,最终在相同的主观质量下比前代标准H.264提高一倍的压缩率。 HEVC视频编码标准虽然在相同的主观质量下提高了一倍的压缩率,与此同时编码过程中所需的计算量大幅提高。过高的计算量严重的阻碍了HEVC标准产业化的过程。本项目通过一系列技术高效的实现了HEVC视频编码标准下的编解码器以及图片编解码器。项目设计了快速率失真优化框架、高性能并行框架以及高效全平台支持框架,生产出高效的编解码器。 本研究室在视频编码技术上有多年的积累,在率失真优化上有深厚的理论基础。同时,在视频编码标准的实现上,本实验室也积累的丰富的经验,设计并实现了高效的HEVC视频以及图片编解码器。
北京大学 2021-02-01
网络视频和电视节目的在线查询和播放控制方法及系统
本发明公开了一种基于移动终端的网络视频和电视节目的在线查询和播放控制方法,包括:服务器端提取并存储互联网视频网站上的视频信息;服务器端利用视频信息中的视频源网页地址,获取视频源网页源数据,从而提取视频源真实地址并存储;服务器端根据电视节目预告网站网页数据编排,提取节目预告信息并进行存储;移动终端作为客户端通过网络视频提取信息进行在线查询获得视频信息,以进行在线播放,通过节目预告信息进行在线查询并遥控电视机进行电视节目播放。本发明还公开了一种在线查询和播放控制系统。本发明通过对网络上的各类视频源信息或
华中科技大学 2021-04-14
一种基于场量分析的视频图像显著性检测方法
本发明公开了一种基于场量分析的视频图像显著性检测方法,包括以下步骤:S1 获得视频图像的静态显著性图;S2 根据连续的视频帧提取场景的光流向量场;S3 通过聚类方法对光流向量场进行初步分类并找出最大分类区块;S4 通过每个分类区块与最大分类区块之间的对比生成差异性能量;S5 规范化差异性能量,获得运动显著性值并生成运动显著性图;S6 将该运动显著性图与所述静态显著性图线性加权相加得到最终显著性图,即可实现对视频图像的显著性检测。本发明的方法综合利用视频场景的静态特征和动态特征来得到显著性映射结果,特
华中科技大学 2021-04-14
一种基于运动颜色关联的视频图像显著性检测方法
本发明公开了一种基于运动颜色关联的视频图像显著性检测方法,包括:获得视频图像的静态显著性图;提取场景的光流向量场;对光流向量场进行初步分类并抛弃最大分类区块;将视频图像从 RGB颜色空间转换到 HSV 颜色空间;根据 HSV 颜色空间 H 分量中对应颜色在输入图像中出现的频率,生成颜色直方图;针对光流向量场有效分类区块中的每个向量,将其范数投射到颜色直方图的相应区间中去,得到每个颜色区间的运动尺度变量;得到每种颜色的运动显著性值并投影到原图像生成运动显著性图;将运动显著性图与静态显著性图相加得到最终
华中科技大学 2021-04-14
首页 上一页 1 2
  • ...
  • 45 46 47
  • ...
  • 51 52 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    64届高博会于2026年5月在南昌举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1