高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
电弧熔丝增材制造复合无针搅拌摩擦制备金属构件的方法
本发明提供一种电弧熔丝增材制造复合无针搅拌摩擦制备金属构件的方法,采用电弧熔丝增材制造工艺,按照预设打印程序在基板上从第一层开始以向上生长的方式逐层沉积,直到沉积最后一层,获得所需金属构件;其中,在第一层至最后一层的沉积过程中,对每一层沉积层均采用无针搅拌摩擦进行处理,提高当前沉积层的表面精整度,并消除沉积层表面的氧化层,加深下一层沉积层与当前沉积层之间相互融合的程度,同时通过无针搅拌摩擦重新分布当前沉积层的残余应力并消除偏析,从而提高相邻沉积层之间的层间结合性。
南京工业大学 2021-01-12
金属催化亚胺与一氧化碳共聚法合成多肽类材料
一种在金属催化下亚胺与一氧化碳共聚合成多肽类聚合物材料的新的、简捷的方法,不用氨基酸为原料,以廉价的亚胺和一氧化碳为单体,在金属催化下发生交替共聚,直接生成多肽,从而使合成多肽的成本大大降低。这一途径将可以避免繁杂的合成和活化氨基酸的步骤,使得多肽的合成和传统的方法(如开环聚合反应法)相比,被大大地简化。所得到的多肽类材料,在生物医学材料和制药等领域具有重要用途。 该方法是在高压釜中,以 1,4-二氧六环为溶剂,在 800psi 压力的 CO、50℃油浴以及在催化剂作用下,亚胺与 CO 共聚得到产物多肽。采用一种简单的金属钴化合物作催化剂,能有效地催化亚胺和一氧化碳的交替共聚,得到高分子量和低分散度的多肽类聚合物。方法简捷。 已取得的知识产权: 本项目得到国家自然科学基金资助,是一项具有原始创新性的科研 成 果 , 已 申 请 2 项 中 国 专 利 ( 申 请 号 200610129890.1 ,200710195204.5)和国际专利(申请号 PCT/CN2007/003465),还将对后续发现及时申请专利保护,因此将拥有该技术的全部知识产权。成果发表在化学刊物 Angew.Chem.,已受到学术界和一些国外公司的关注。 应用前景分析及效益预测: 应用行业:生物医学材料、制药、功能材料。该项目所提供的新型多肽类化合物,已经能够为生物医学工程领域提供一类新的重要的可供选择的材料。从长远来看,开发出多个新的有效的催化剂体系,实现更多类亚胺与一氧化碳的共聚,最终使该方法成为一种广泛有效的多肽的合成方法,将具有重大的社会和经济效益。 应用领域及能为产业解决的关键技术: 作为新的生物医学材料可能具有更好的生物兼容性,因而代替现有材料用于人工血管等方面。此外,还可被用作药物的糖衣以及具有药物缓释等功能。如能实现一般肽类的合成,其低廉的成本将有潜力替代用任何其它合成方法得到的该类产品。不用氨基酸为原料,而是以廉价的亚胺和一氧化碳为单体,从而使合成多肽的成本大大降低、方法大大简化。 技术产业化条件: 投资规模约 500 万元(不含基建投入)。
南开大学 2021-04-13
基于过渡金属基化合物的高能量密度超级电容器研发
超级电容器是一种新型绿色储能器件,拥有比功率大、充放电效率高, 寿命长等优点,在低碳经济时代展现出巨大应用前景,已经被广泛应用于电 子产品、电动汽车、混合电动汽车、无线通讯设施、信号监控、太阳能及风 力发电等领域。开发具有高能量、高循环性和低成本的超级电容器是该领域 未来重要研究之一。电极材料作为超级电容器的核心组成部分,对其储能 性能有着至关重要的影响,而具有高理论容量、低价格的过渡金属基化合物 (Fe、Co、Ni)是实现高容量、低成本超级电容器首选的电极材料。以过渡金 属基化合物为主要研究对象,对其组分及结构进行了调控,通过储能性能测 试及储能机理分析,为开发高性能、低成本的活性电极材料提供实验依据。 这一研究的开展,给组装超高能量密度的超级电容器并使其从实验室走向我们 的日常生活带来了新的前景。 1.先进性及产业化前景:提高性能、降低成本一直以来都是超级电容器发展的 主旋律,其中能量密度低是超级电容器发展面临的主要问题,因此开发出具 有高能量、成本低的超级电容器迫在眉睫。就提高性能而言,超级电容器的 电极改进是重点,主要途径是通过提高电压窗口和提高电极材料的比电容。 目前针对超级电容器电极材料的研究主要集中在:(1)改进现有的电极材料; (2)开发新型电极材料;(3)改进生产工艺,实现低成本化。目前在全球范 围内达到工业化生产水平的超级电容器基本都是以双电层为储能机制的活性 碳基超级电容器,而以贋电容为储能机制的超级电容器尚处于实验室开发阶 段,因此超级电容器还有很大的发展空间。 2.对所在行业和关联产业发展和转型升级的影响:根据超级电容器的容量大小 和功率密度,可以将其用作后备电源、替换电源和主电源。当主电源发生故障 而不能正常使用时,超级电容器便起到后备补充作用,它具有寿命长、充放电快 和环境适应性强等优点。当用作替换电源时,主要应用于对环境变化有特殊要 求的场合,例如白天太阳能提供电源并对超级电容器充电,晩上则由超级电 容器提供电源。作为主电源时,主要利用超级电容的大功率密度,一般是一个或几个超级电容器通过一定的方式连接起来持续释放几毫秒至几秒的大电 流,放电之后,再由低功率的电源对其充电。 3.市场分析:根据IDTechEX数据统计,2014年超级电容器全球市场规模为11 亿美元,预计到2018年,超级电容器全球市场规模将达到32亿美元,年复合 增长率为31%,并预测将会以此速度预计到2018年,超级电容器全球市场规模 将达到32亿美元,年复合增长率为31%,并预测将会以此速度继续增长。我国 将“超级电容器关键材料的研究和制备技术"列入到《国家中长期科学和技 术发展纲要(2006-2020年)》,作为能源领域中的前沿技术之一。有数据显示, 2015年国内超电市场规模已经超过了 70亿元,因此,在这样的一个大背景下, 研究新材料以开发具有超高能量密度的超级电容器具有非常大的市场前景。
重庆大学 2021-04-11
借助原位环境电镜揭示金属催化剂真实活性表面的研究成果
南方科技大学材料科学与工程系副教授谷猛团队联合中科院大连化学物理研究所、上海高等研究院等,巧妙借助原位环境电镜,在真实反应条件下直接观测到NiAu双金属催化剂在二氧化碳加氢反应中的动态过程,揭示了该催化剂在反应中的真实活性表面,为认识催化过程提供了新的思路。该研究发表在《自然-催化》(Nature Catalysis )上。材料系科研助理韩韶波为文章共同第一作者,谷猛为文章共同通讯作者。 实验表明,在反应气氛和温度下,内核Ni原子会逐渐迁移至表面,与Au合金化;在降温停止反应时,表面Ni迁移回核心部分,重新形成Ni@Au壳型结构。原位红外和原位X射线吸收谱的结果也从宏观角度证实了上述观测结果。团队结合理论计算,提出了新的催化机理。该研究揭示了催化剂真实活性表面,展示了原位电镜在研究构效关系中的重要性,并且为研究金属催化提供启示。
南方科技大学 2021-04-11
我国科学家实现生物3D打印技术重要突破
生物3D打印是利用3D打印机,将含有细胞、生长因子和生物材料的生物墨水打印出仿生组织结构的新兴技术,但目前仍无法制备具有生理功能并且可以长期存活的复杂组织。
科技部生物中心 2022-04-01
电生物质共转化为合成天然气工艺
针对我国严重弃水问题,提出将冗余水电就地转化为易保存和运输的清洁能源天然气的整体工艺,冗余水电电解水产生氢气,生物质气化提供碳源,制备甲烷化催化剂,氢气和合成气在高效催化剂作用下,在特殊设计的流化床反应器中反应生成天然气,实现水电和天然气系统的交叉互补运行,提供能源优势互补新途径。建成了一套电转气小型示范装置,运行结果表明:催化剂活性高、性能稳定,甲烷选择性>99.9%,转化率可达100%。
东南大学 2021-04-11
蓖麻油基生物航煤及核心催化反应技术
南开大学蓖麻生物航油集成技术,是在“应对气候变化、绿色低碳发展”的前瞻理念下,集成南开十几年蓖麻产业链开发基础及化学化工科研优势,自主研发,现已取得阶段性成果:建立了“生物航油基础研发基地”,突破了催化剂关键技术,打通了工艺流程,产品全项达标,成本在目前所有生物质航油中最低,申请中国发明专利 7 项,列入国家发改委《战略新兴产业重点产品目录》、《国家重点推广的低碳技术项目指南》等,获第四届国家和天津市创新创业大赛奖项,具有拉动千亿元绿色低碳产业链的巨大发展潜力。 生物航空煤油(生物航煤)就是以动植物油脂或农林废弃物等生物质为原料生产的航空煤油,可在航空煤油中大比例的添加使用(50%),且不需要对发动机做任何改进。2012 年开始的欧盟航空碳税之争已迫使各国争相开发生物航煤技术来实现航空业的碳减排。生物航煤的研发契合国家十三五发展战略规划,对我国航空业减排、根治雾霾、维护能源安全、以及拉动三农等都有重要作用,是国家大力支持的绿色低碳产业创新增长点,是当前国家急需解决的重大科学难题之一。目前,该项目的技术难题就是核心催化剂脱氧活性不佳、航煤选择性低、稳定性差。 南开大学李伟教授科研团队目前已开发出具有完全自主知识产权的蓖麻航油制备及配套催化剂关键技术,使原料油转化率>99%,蓖麻生物航油产品收率>80%;经中石化石科院按国际生物航煤最高标准的 ASTM D7566 和国家喷气 3 号燃料(GB 6537-2006)等指标检测,全项达标。相关研究内容在《Bioresource Technology》发表论文 1 片、申报中国发明专利 7 项、国际发明专利 2 项。相关技术受到国内外高度重视及新闻媒体关注。在第四届中国创新创业大赛中以天津赛区第一名成绩进入全国总决赛,最终以第 6 名荣获“全国优秀团队”称号。
南开大学 2021-02-01
生物炭暨秸秆炭化综合利用技术研究与应用
针对秸秆直接还田难、综合利用率低、焚烧污染严重,土壤碳库匮缺、耕地质量提升乏力等“老、大、难”问题,沈阳农业大学率先提出了“秸秆炭化还田”新理论,确立了“以生物炭为核心,以炭化技术为基础,以生物炭基肥料和生物炭基土壤改良剂为主要发展方向,兼顾能源化利用”的技术路线。2005年以来,围绕“生物炭暨秸秆炭化综合利用技术研究与应用”,项目组先后突破了生物炭规模化制备与农业应用关键技术,构建了全产业链技术体系,推动了成果高效转化,为秸秆间接还田开辟了一条新途径。    1. 研发出“半封闭式亚高温缺氧干馏炭化工艺”和“组合式多联产生物质快速炭化设备”,突破了秸秆“低成本、大批量制炭”的产业技术瓶颈。该工艺设备对原料适应能力强、生物炭生产效率高、能耗低,有效解决了农作物秸秆密度低、含水量高、预处理能耗大、炭化效率低等问题。所制备的生物炭含碳量高、孔隙丰富,可广泛用于土壤碳封存、农田温室气体减排、化肥减量增效、耕地质量提升等领域。    2. 开发出生物炭基肥料等系列生物炭基农业投入品,集化肥减量、土壤改良、节本增效等功能于一身,寓土壤改良与土壤利用之中,突破了生物炭规模化田间应用技术瓶颈。综合运用作物学、土壤学、植物营养学、微生物学、生物信息学等方法,系统揭示了生物炭固碳、改土、保肥、持效、促生作用规律与机制。在此基础上,遵循养分归还学说和农田生态系统物质循环规律,发明了以生物炭为载体生产专用肥料、土壤改良剂、水稻育苗基质的技术与方法,开发出以生物炭基肥料为代表的系列生物炭基农业投入品,能够在不增加农民生产成本的情况下实现秸秆间接还田,解决了生物炭直接还田成本高、推广难、市场化程度低等问题,打通了生物炭规模化田间应用“最后一公里”,改变了化学类缓控释肥料只减肥、改土作用不明显、只在当季起作用的局面。    3. 开展了大规模试验示范,构建了“分散制炭、集炭异地深加工”产业模式,实现了成果转化。针对集中处置利用与秸秆等农林废弃物分布广、收储运困难之间的矛盾,构建了“分散制炭、集炭异地深加工”产业模式,将产业链中的运输成本降低约 70%;制定了《生物炭基肥料》农业行业标准并首次发布,突破了制约生物炭技术产业化和行业健康发展的“瓶颈”问题。    截至 2016 年底,项目技术累计推广 1090.2 万余亩,辐射全国 20 余个省(市、自治区)。其中,2014-2016 年,项目技术推广应用 575 万亩,新增销售额 19665.6万元,新增利润 2359.9 万元,节支增收 42890.9 万元。合计新增经济效益 45250.8万元。
沈阳农业大学 2021-05-04
蓖麻油基生物航煤及核心催化反应技术
南开大学蓖麻生物航油集成技术,是在“应对气候变化、绿色低 碳发展”的前瞻理念下,集成南开十几年蓖麻产业链开发基础及化学 化工科研优势,自主研发,现已取得阶段性成果:建立了“生物航油基础研发基地”,突破了催化剂关键技术,打通了工艺流程,产品全 项达标,成本在目前所有生物质航油中最低,申请中国发明专利 7 项, 列入国家发改委《战略新兴产业重点产品目录》、《国家重点推广的低 碳技术项目指南》等,获第四届国家和天津市创新创业大赛奖项,具 有拉动千亿元绿色低碳产业链的巨大发展潜力。 生物航空煤油(生物航煤)就是以动植物油脂或农林废弃物等生 物质为原料生产的航空煤油,可在航空煤油中大比例的添加使用 (50%),且不需要对发动机做任何改进。2012 年开始的欧盟航空碳 税之争已迫使各国争相开发生物航煤技术来实现航空业的碳减排。生 物航煤的研发契合国家十三五发展战略规划,对我国航空业减排、根 治雾霾、维护能源安全、以及拉动三农等都有重要作用,是国家大力 支持的绿色低碳产业创新增长点,是当前国家急需解决的重大科学难 题之一。目前,该项目的技术难题就是核心催化剂脱氧活性不佳、航 煤选择性低、稳定性差。 南开大学李伟教授科研团队目前已开发出具有完全自主知识产 权的蓖麻航油制备及配套催化剂关键技术,使原料油转化率>99%, 蓖麻生物航油产品收率>80%;经中石化石科院按国际生物航煤最高 标准的 ASTM D7566 和国家喷气 3 号燃料(GB 6537-2006)等指标 检测,全项达标。相关研究内容在《Bioresource Technology》发表论 文 1 片、申报中国发明专利 7 项、国际发明专利 2 项。相关技术受到 国内外高度重视及新闻媒体关注。在第四届中国创新创业大赛中以天 津赛区第一名成绩进入全国总决赛,最终以第 6 名荣获“全国优秀团 队”称号。 市场应用前景: 生物航油市场需求巨大,据国际民航组织规定,2020 年中国航空燃油的 30%(约 1200 万吨)要打上“生物质标签”,如果按“50%生 物质航油:50%化石航油”掺混,需要 600 万吨“纯”生物质航油, 总产值达数千亿元。但 2014 年全国生物航油产量不足 100 吨,离规 模化相差甚远。蓖麻航油具备占据 50%市场份额的可能性,按 5 年生 产蓖麻生物航油 300 万吨计算,仅技术转让和催化剂销售利润就可达 5 亿元以上。同时,使用生物航油可降低 50%以上的污染物排放,可 有效减排治霾,维护我们的环境安全。 拟开展合作方式: 现已申请中国发明专利 7 项,拟开展合作方式:建设年产万吨级生物航油 及配套催化剂示范生产装置,采用股权合作或实施许可的方式合作。
南开大学 2021-04-11
生物矿化过程模拟及仿生牙修复方法的建立
课题主要研究在模拟及真实口腔环境中,发展缺损牙齿和种植体表面蛋白质组装体等生物调控因子的程序化构筑和仿生矿化修复技术,并从微、介到宏观尺度探究材料生长过程中蛋白质组装体介导的生物矿化机制。该研究为原位仿生矿化方法修复牙损伤提供科学依据和理论指导;
陕西师范大学 2021-02-01
首页 上一页 1 2
  • ...
  • 124 125 126
  • ...
  • 185 186 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    64届高博会于2026年5月在南昌举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1