高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
人工智能实验室
优化人工智能学科布局,加快人工智能领域一级学科建设。 密切关注人工智能领域前沿技术,将技术及资源引入到人才培养。 部署完整的人工智能实验环境、实验资源、课程体系和教学全流程平台。 搭建完整的专业框架,全面支撑高校人工智能方向的教学与科研。 培养具备深度学习算法设计开发的人工智能应用型人才。
青软创新科技集团股份有限公司 2022-07-06
人工智能教学实验平台
面向人工智能专业方向理论和实验的云教学平台,融合了Jupyter Notebook实验平台和教学资源中心两大模块。提供开箱即用人工智能编码实验环境,使教学过程高效、便捷。
新大陆教育 2022-06-23
一种适用于循环肿瘤细胞捕获的微流控芯片
癌症从发生到临床发现往往需要10年的时间,癌症治疗的根本途径是早期发现或者对已转移瘤能有效治疗。循环肿瘤细胞(circulatingtumor cells, CTC)是指从原位瘤脱落下来进入到循环系统尤其是血液中的肿瘤细胞。作为液态活检核心靶标的CTC,不仅可用于癌症转移前的早期筛查,而且在临床肿瘤的分期、预后、特异性药物筛选、疗效检测、治疗和复发监测等方面都具有极其重要的临床应用价值。然而由于CTC在血液中数量极其稀少(约1-100个/mL),其高效高准确捕获一直是科学前沿难题和临床应用的关键障碍。 现有的CTC检测方法仍存在较大的局限,包括检测准确度不足、成本高、效率低、时间长以及检测条件苛刻等。本项目提出的新型微流控芯片设计,将基于流线的降速结构和基于过滤的捕获结构有机整合,实现了CTC特异性的汇聚和保留,同时将部分白细胞和红细胞分流到出口。每经过一个这样的降速结构,CTC就被浓缩一次,白细胞和红细胞被分走一部分。更重要的是,每一个单元液流速度均得到了显著下降(变为原来的1/2)。经过多组这样的降速结构,液流流入捕获结构,此时流速已经非常缓慢,利用CTC和其他血细胞的尺寸和形变差异,通过三棱柱阵列能实现CTC的高效捕获。总体来说,本项目所提出的微流控芯片能在很大流速范围内(5-40 mL/h)都实现高捕获效率(高达94.8%)。此外,芯片上捕获到的CTC的纯度也较高(高达4log白细胞去除率)。临床癌症患者患者双盲测试结果详实准确率达到100%。运用本项目中的微流控芯片,将实验室培养的宫颈癌HeLa细胞掺杂到健康血液中,以模拟癌症患者血液,在很大流速范围内(5-40 mL/h)都能实现高捕获效率(高达94.8%)。同时,为了证明此微流控芯片的普适性,测试了四种实验室细胞系,包括乳腺癌细胞系MCF-7和MDA-MB-231,宫颈癌细胞系HeLa和肺癌细胞系NCl-H226,捕获效率均稳定在91.3%以上。此外,也设置了不同的癌细胞密度以模拟实际的癌症患者血液,捕获效率近似为96.2%。随后,将本项目应用于临床,对11例癌症患者血液中的CTC进行检测,检出率高达100%,CTC个数从6-117个/mL不等,平均值31个/mL,中位数25个/mL。这些研究表明本项目中的微流控芯片能实现癌症患者的早期检测。本项目实现对癌症患者血液中的循环肿瘤细胞的单细胞灵敏度和高特异性的的捕获,由于其成本低,方便快速,效率高,对操作条件不敏感等,因而非常适合大规模应用于临床,实现癌症的早期诊断、实时动态监测和阻断转移等效果。
北京大学 2021-04-11
直驱永磁同步风力发电机组风能捕获跟踪控制方法
本发明公布了一种直驱永磁同步风力发电机组风能捕获跟踪控制方法,属于风力发电机组运行控制技 术领域。本发明控制方法包括如下步骤:首先,在机组启动并网刚开始发电的过程中,调节机组的转速ω; 其次,风速改变时,根据风速传感器测量的风速的相对变化量增加或减少的方向,确定机组转速控制需要 变化的增加或减少的方向,根据风速测量值相对量变化的大小,由叶尖速比λ计算表达式,计算确定转速所 需要的控制变化量;再次,通过增加或减少机组输出功率的粗调节;最后,使风轮机吸收的机械功率Pm 满 足dPm/dω=0的条件,使机组运行于CP-λ曲线的顶点或与其相当接近的点。本发明能实现对直驱永磁同步 风力发电机组最大风能捕获的快速跟踪控制,提高机组的发电效益。
南京工程学院 2021-04-11
一种适用于循环肿瘤细胞捕获的微流控芯片
癌症从发生到临床发现往往需要10年的时间,癌症治疗的根本途径是早期发现或者对已转移瘤能有效治疗。循环肿瘤细胞(circulatingtumor cells, CTC)是指从原位瘤脱落下来进入到循环系统尤其是血液中的肿瘤细胞。作为液态活检核心靶标的CTC,不仅可用于癌症转移前的早期筛查,而且在临床肿瘤的分期、预后、特异性药物筛选、疗效检测、治疗和复发监测等方面都具有极其重要的临床应用价值。然而由于CTC在血液中数量极其稀少(约1-100个/mL),其高效高准确捕获一直是科学前沿难题和临床应用的关键障碍。 现有的CTC检测方法仍存在较大的局限,包括检测准确度不足、成本高、效率低、时间长以及检测条件苛刻等。本项目提出的新型微流控芯片设计,将基于流线的降速结构和基于过滤的捕获结构有机整合,实现了CTC特异性的汇聚和保留,同时将部分白细胞和红细胞分流到出口。每经过一个这样的降速结构,CTC就被浓缩一次,白细胞和红细胞被分走一部分。更重要的是,每一个单元液流速度均得到了显著下降(变为原来的1/2)。经过多组这样的降速结构,液流流入捕获结构,此时流速已经非常缓慢,利用CTC和其他血细胞的尺寸和形变差异,通过三棱柱阵列能实现CTC的高效捕获。总体来说,本项目所提出的微流控芯片能在很大流速范围内(5-40 mL/h)都实现高捕获效率(高达94.8%)。此外,芯片上捕获到的CTC的纯度也较高(高达4log白细胞去除率)。临床癌症患者患者双盲测试结果详实准确率达到100%。
北京大学 2021-02-01
超构表面图像显示
设计两个硅纳米棒作为超构表面的基本相干像素结构单元,从而实现光场透射的有效调控。通过独立控制两个纳米棒的转角,可以实现单层结构对振幅和相位的独立调控,从而能够在单层纳米结构上实现任意全息与平面图像的集成。更进一步,针对于彩色平面图像,可以通过硅纳米棒的尺寸(即单根纳米棒的长和宽)以及纳米棒之间的转角差的控制,实现对颜色HSB三参数的按需调控,从而将超构表面结构色的调控能力从二维的色度-饱和度平面,真正拓展到三维的色度-饱和度-强度空间 以上研究成果将丰富和拓展超构表面在图像器件方面的应用,比如实现有阴影信息的彩色图像打印,开发新型全彩平面与彩色全息图像的集成显示技术,研制基于平面和全息图像集成的纳米隐写信息安全技术等。同时,该工作中体现的相干像素设计理念也将对复杂光场调控问题提供新的解决思路和方案
中山大学 2021-04-13
耐磨透明超疏水涂层
超疏水表面具有如自洁,疏水防污等特性,使其在众多领域都有巨大的应用前景。透明性的引入扩展了其在挡风玻璃,玻璃幕墙等领域的应用面。目前,透明超疏水涂层普遍存在易磨损,制作工艺复杂,缺少大规模制备的操作性,成本昂贵等缺点。本涂层利用长链硅烷修饰两种100nm粒径以下二氧化硅溶胶直接涂覆于由胶黏剂处理过的基材表面并稍加摩擦获得耐磨透明超疏水涂层。此涂层相较于气相沉积,模版法,刻蚀等技术制作方法简单,步骤与用时较少,并能大面积制备,重复涂覆。同时,制备价格较低,原料低毒环保,产品实用性强。
南京工业大学 2021-04-13
超细分级机
南京工业大学粉体工程研究所在微粉及超细粉的分级方面进行了多年的研究开发工作。开发成功了NHX系列选粉机和NHCH系列超细分级机。其中NHX系列选粉机已经在水泥行业和其它领域得到了广泛的应用。随着超细粉在各行各业广泛使用,NHCH系列超细分级机也有着很广的应用前景。NHCH系列超细分级机具有分级效率高、分级精度好、结构合理、投资省等优点。是替代进口的理
南京工业大学 2021-01-12
超细材料的制备
本项目主要包括超细高纯氧化铝粉体及生物医用氧化锆纳米粉体,以纳米 级、亚微米级的无机盐、过渡金属离子为中间原料制备,具有耐候性好、耐酸 碱腐蚀、投资规模小、附加值高等优点,应用广泛,能够替代国外进口产品。 本项目是通过溶胶凝胶与水热法相结合的技术手段,使易水解的金属无机盐或 金属醇盐化合物在某种溶剂中与水发生反应,经过水解与缩聚过程逐渐凝胶化, 再经干燥、烧结等后处理得到超细粉末,避免了微粒的过度生长以及在液相中 的团聚,可获得粒径分布很窄纳米级。
山东大学 2021-04-13
超精密温度控制装置
针对极紫外光刻机物镜的温管和温控技术难题,设计和开发了针对极紫外光刻机的具有自主知识产权的超精密温控装置,目前已应用在半导体制造业及光刻机生产厂商、高档数控行业和民用航天上,涉及企事业单位共30余家。研制了不同控温精度和控温功率的系列产品,采用主动温度控制方法,解决了单点温度控制稳定性和多通道温度控制均匀性的问题;设计了具有功能模块化的温控层次结构,解决了超精密温控中系统内外的扰动和时滞问题,控温速度快;研制了大功率串联半导体制冷模块,结合模糊PID控制算法,提高了收敛速度、控制精度和抗扰动能力。项
电子科技大学 2021-04-14
首页 上一页 1 2
  • ...
  • 12 13 14
  • ...
  • 143 144 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    64届高博会于2026年5月在南昌举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1