高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
上海仪研YJ-0613G 全自动药物凝固点测定仪
YJ-0613G 全自动药物凝固点测定仪 本仪器按《中华人民共和国药典》2020年版四部 通则 0613凝点测定法要求设计制造,用于检测化学试剂及药物等凝固点。本仪器采用了模块化设计,检测部分采用了先进的传感器,主控部分采用工业级PLC系统,控制性能稳定,制冷采用高性能压缩机,具有降温速度快,使用寿命长等优点。本仪器采用工业控制屏操作,样品装好后,一键开启,自动往返式机械搅拌、自动显示温度曲线、自动判断凝固点、自动打印测试数据。本仪器配有加热和制冷,介质浴温控范围广。 一、技术参数 1、工作电源: AC220V±10% 50Hz 2、依据标准: 2020版中国药典 3、显示方式:  7寸工业级彩色液晶触摸屏,全中文操作界面 4、控制系统: 工业级PLC控制 5、冷浴温度范围: -40~80 ℃,分辨率 0.1 ℃ (也可以选配-70~80 ℃) 6、测温元件:  高精度温度传感器 7、工作单元: 单浴双孔(可独立可同时实验) 8、恒温浴液: 防冻液、水或酒精(依据恒温浴实验要求) 9、搅拌方式:  电机搅拌,60次/min 10、制冷方式:  压缩机制冷 11、数据输入:  触摸屏数据输入 12、数据输出:  微型热敏打印机,自动打印,打印快速、清晰 13、存储数据:  自动储存1000个测定结果,可随时查看或打印历史测试数据 14、环境温度:  5℃~30℃   15、相对湿度: 30~70%RH 二、性能特点 1、7寸工业级彩色触摸显示器,全中文操作界面,实时显示试样凝固点过程的温度曲线。 2、仪器自动搅拌,自动判断凝固点、自动打印测试数据。 3、采用高性能压缩机,低噪音、降温快。 4、采用高精度温度传感器,内置温度校正,检测结果可靠。 5、仪器浴槽为杜瓦瓶材质,耐低温和高温范围宽、 根据实验要求选用适合的温度来实验。 6、采用电机搅拌,特殊机械搅拌装置,搅拌均匀。
仪研智造(上海)药检仪器有限公司 2025-02-20
气体定压比热测定仪
                                                   GCYD-575 气体定压比热测定仪             外形尺寸:1000×400×600mm 工作电压:220V  功率:230W 主要用途:可测300度以下气体的定压比热。 主要配置:由静音风机,镀瓦瓶比热测定本体,精度  ±0.2湿式气体流量计及温度、功率测量仪表等组成。 主要技术参数: 加热器:75W 湿式气体流量计:型号LML-1 、额定流量200L/h 静音风机:电压220V 50Hz  功率85W   实验桌 实验桌为型材结构,桌面为耐磨高密度板,结构坚固,设有两个大抽屉、用于放置工具、存放资料等。桌面用于安装电源控制屏并提供一个宽敞舒适的工作台面。
上海计呈教学设备有限公司 2025-05-08
一种U型集热管超导液太阳能热水器
本发明公开了一种U型集热管超导液太阳能热水器。在水箱的一端设有集热管孔,U型集热管由集热内管和集热外管组成,集热内管的内置部分通入水箱内浸入水中,集热内管外置部分套装有集热外管,安装在抛物槽面的聚光线上,集热内管与集热外管间留有间隙,并呈真空状态,集热内管的内置部分向上倾斜,集热内管外置部分向下倾斜,集热内管管内装有超导液。集热管内的超导液受阳光照射,转变为高温超导液蒸气,进入集热内管内置部分,将水箱水加热,水吸热后使超导液蒸气一部分变为超导液再流回集热内管外置部分,超导液受到阳光照射再次蒸发,如此往复,实现将水加热。
河北师范大学 2021-05-03
一种混合型磁通耦合超导故障限流器及限流方法
本发明涉及一种混合型磁通耦合超导故障限流器及限流方法,本发明中:耦合变压器的一次侧绕组 线圈同快速开关相联且并入 MOA 氧化锌电阻片,二次侧绕组线圈同超导限流材料相串联,继而将一、 二次侧绕组线圈呈反向并联后接入电力系统主回路。在电力系统正常运行时,快速开关处于闭合状态; 当系统发生短路故障后,控制快速开关触发断开,耦合变压器的磁通锁定特性将解除,且超导材料因其 通流大于临界电流设定而切换到高阻态,此时限流器呈现电感-电阻混合式成分进行故障限
武汉大学 2021-04-14
一种制备高温超导涂层导体LaSrMn03缓冲层薄膜的方法
本发明公开了一种制备高温超导涂层导体La0.7Sr0.3MnO3缓冲层薄膜的方法,属于高温超导材料制备技术领域。该方法制备的薄膜平整致密,织构良好,可以充分发挥La0.7Sr0.3MnO3作为导电型缓冲层薄膜具有的隔离、外延、电流传输的三重功效。本发明包括以下步骤:分析纯氧化镧(La2O3)按阳离子比La∶Sr∶Mn=0.7∶0.3∶1的比例,溶解于乙酸中(乙酸与阳离子摩尔比为10∶1)。待完全溶解后,将溶液置于红外干燥箱中,待溶液被烘干成白色固体后取出。将乙酸锶和乙酸锰按照上述阳离子比La∶Sr∶Mn=0.7∶0.3∶1的比例与制得的白色固体(即乙酸镧)混和溶解在丙酸中,形成无水溶液;向无水溶液中加入聚乙烯醇缩丁醛(PVB),制成成膜性好的胶体;再将胶体涂覆在基片上,干燥后,放入烧结炉中烧结成相,即得镧锶锰氧La0.7Sr0.3MnO3高温超导涂层导体缓冲层。该方法成本不高,制作工艺简单,操作控制容易,不污染环境。
西南交通大学 2016-10-20
一种白光干涉原子力探针系统的成像自动调整装置及其控制方 法
本发明公开了一种基于白光干涉原子力探针扫描显微镜探针系 统的成像自动调整装置自动及其控制方法,该装置主要包括计算机, 夹持机构及铰链机构,原子力探针及其探针组件,白光干涉显微系统, 面 CCD 光路连接筒。在白光干涉原子力探针显微镜连接完成的情况 下,根据面 CCD 上探针的成像与面 CCD 坐标系的水平夹角,通过计算机来控制舵机偏转一定的角度,使得原子力探针在面 CCD 中的成像 与面 CCD 坐标系中的夹角在误差范围内,从而得到测量的结果有较小 的测量误差。本发明可以实现探针在面 CCD 中的成
华中科技大学 2021-04-14
一种五自由度的白光干涉原子力探针位姿调整机构
本发明公开了一种原子力探针位姿调整机构。包括探针座,调 节机构和连接头。其中探针座用于原子力探针的安装固定;调节机构 包括由下至上的第一调节部件、第二调节部件、第三调节部件以及第 四调节部件,分别用于原子力探针的里外水平偏摆、左右水平和上下 旋转、上下俯仰以及上下竖直位姿调节;连接头用于与显微物镜相连。 本发明能够实现原子力探针姿态在五个自由度上的细微调节,各个调 节动作相互独立,彼此不发生干涉,互不影响,提高了探针姿态的调 节精度;且能够对调节后的位姿进行锁定,使其保持稳定。
华中科技大学 2021-04-14
中国科大在分布式量子精密测量方面取得重要进展
中国科学技术大学教授潘建伟及其同事陈宇翱、徐飞虎等利用多光子量子纠缠在国际上首次实现分布式量子相位估计的实验验证,这为将来构建基于量子网络的高精度量子传感奠定基础。该成果于11月30日在国际学术知名期刊《自然·光子学》上在线发表。 分布式传感是一种可用于同时执行远程空间多个节点上精密测量任务的重要手段,在日常生活、科学研究和工程等领域有着广泛的应用。例如,该项技术可用于桥梁、飞机等大型结构的应力场分布和温度场分布的有效监测。随着量子技术的不断发展,传感技术也迈进了量子化时代。量子网络作为量子信息和量子计算的重要组成,在执行各类远程多节点任务中起着重要作用。当对多个空间分布的参量进行测量时,分布式量子传感能够实现超越经典统计极限的测量精度。然而,分布式量子传感面对的一个重要问题是:如何选择并制备能够实现对多个参量最优的测量精度的量子纠缠态。研究表明,对于某类分布式的最大纠缠态,理论上能够达到最优测量精度,即海森堡极限。 研究团队设计了最优的测量方案,基于多光子量子纠缠,通过操纵六光子干涉仪,实验演示了多个独立的相移及其平均值测量。实验结果显示,利用分布式纠缠态进行测量,其精度可以超越经典传感器的理论极限。基于光子纠缠和相干性组合的方案,研究团队进一步实验演示了多个空间相移的线性组合测量(参数数量总个数达到21个),与仅利用粒子纠缠的方案对比,该组合式方案不仅能够增加可测量参数数量,还能提高测量精度。 该项工作成功实现了多参量分布式量子传感的原理性实验验证,评估了不同纠缠结构情况下的测量精度,验证了纠缠结构对测量精度的增强效果,扩展了资源利用率和可测量的参量数量,朝分布式量子传感的实际应用迈出了重要一步。《自然·光子学》杂志的审稿人对该工作给予高度评价,称赞这是一项“重要的里程碑工作”(constitutes a significant milestone)。
中国科学技术大学 2021-02-01
中国科大在分布式量子精密测量方面取得重要进展
项目成果/简介:中国科学技术大学教授潘建伟及其同事陈宇翱、徐飞虎等利用多光子量子纠缠在国际上首次实现分布式量子相位估计的实验验证,这为将来构建基于量子网络的高精度量子传感奠定基础。该成果于11月30日在国际学术知名期刊《自然·光子学》上在线发表。 分布式传感是一种可用于同时执行远程空间多个节点上精密测量任务的重要手段,在日常生活、科学研究和工程等领域有着广泛的应用。例如,该项技术可用于桥梁、飞机等大型结构的应力场分布和温度场分布的有效监测。随着量子技术的不断发展,传感技术也迈进了量子化时代。量子网络作为量子信息和量子计算的重要组成,在执行各类远程多节点任务中起着重要作用。当对多个空间分布的参量进行测量时,分布式量子传感能够实现超越经典统计极限的测量精度。然而,分布式量子传感面对的一个重要问题是:如何选择并制备能够实现对多个参量最优的测量精度的量子纠缠态。研究表明,对于某类分布式的最大纠缠态,理论上能够达到最优测量精度,即海森堡极限。 研究团队设计了最优的测量方案,基于多光子量子纠缠,通过操纵六光子干涉仪,实验演示了多个独立的相移及其平均值测量。实验结果显示,利用分布式纠缠态进行测量,其精度可以超越经典传感器的理论极限。基于光子纠缠和相干性组合的方案,研究团队进一步实验演示了多个空间相移的线性组合测量(参数数量总个数达到21个),与仅利用粒子纠缠的方案对比,该组合式方案不仅能够增加可测量参数数量,还能提高测量精度。 该项工作成功实现了多参量分布式量子传感的原理性实验验证,评估了不同纠缠结构情况下的测量精度,验证了纠缠结构对测量精度的增强效果,扩展了资源利用率和可测量的参量数量,朝分布式量子传感的实际应用迈出了重要一步。《自然·光子学》杂志的审稿人对该工作给予高度评价,称赞这是一项“重要的里程碑工作”(constitutes a significant milestone)。
中国科学技术大学 2021-04-11
有关大规模硅基集成高维光量子芯片的工作
利用大规模集成硅基纳米光量子芯片技术,实现对高维度光量子纠缠体系的高精度和普适化量子调控和量子测量。 (图一)基于硅纳米光波导的大规模集成光量子芯片(可实现对高维量子纠缠体系的高精度、可编程、且任意通用量子操控和量子测量)       集成光学量子芯片技术,基于量子力学基本物理原理,使用半导体微纳加工工艺实现单片集成光波导量子器件(包括单光子源、量子操控和测量光路,以及单光子探测器等),可以实现对量子信息的载体单光子进行处理、计算、传输和存储等。集成光学量子芯片具有集成度高、稳定性高、性能好、体积小、制造成本低等诸多优点。因此,该技术被普遍认为是一种实现光量子信息应用的有效技术手段。      利用硅基纳米光波导技术实现的光量子芯片具有诸多独特优点,例如与传统微电子加工工艺兼容、可集成度高、非线性效用强、以及工作波长与光纤量子通信兼容等。然而,迄今为止光量子芯片的复杂度仅限于小规模的演示,如集成少数马赫-曾德干涉仪对光子态进行简单操控。因此,我们迫切需要扩大集成量子光路的复杂性和功能性,增强其量子信息处理技术的能力,从而推进量子信息技术的应用。       相干且精确地控制复杂量子器件和多维纠缠系统是量子信息科学和技术领域的一项难点。相对于目前普遍采用的二维体系量子技术,高维体系量子技术具有信息容量大、计算效率高、以及抗噪声性强等诸多优点。最近,多维度量子纠缠系统已分别在光子、超导、离子和量子点等物理体系中实现。利用光子的不同自由度,如轨道角动量模式、时域和频域模式等,可以有效编码和处理多维光量子态。然而,实现高保真度、可编程、及任意通用的高维度量子态操控和量子测量,依然面临很多困难和挑战。       针对上述问题,英国布里斯托尔大学、北京大学、丹麦技术大学、德国马普研究所、西班牙光学研究所和波兰科学院的科研人员密切合作,并取得了突破性进展。研究团队提出并实现了一种新型的多路径加载高维量子态方式,即每个光子以量子叠加态的形式同时存在于多条光波导路径,从而实现了一个高达15×15的高维量子纠缠系统。通过可控地激发16个参量四波混频单光子源阵列,可以制备具有任意复系数的高维度量子纠缠态。通过单片集成通用型线性光路,可对高维量子纠缠态进行任意操控和任意测量。因此,该多路径高维量子方案具有任意通用性。与此同时,团队充分利用集成光路的高稳定性和高可控性,实现了高保真度的高维量子纠缠态,如4、8和12维度纠缠态的量子态层析结果分别为96、87% 和 81%保真度,远超其他方式制备的高维量子纠缠态性能。       更重要的是,团队通过硅基纳米光子集成技术,实现了目前集成度最复杂的光量子芯片(图一所示),单片集成550多个光量子元器件,包括16个全同的参量四波混频单光子源阵列、93个光学移相器、122个光束分束器、256个波导交叉结构以及64个光栅耦合器,从而达到对高维量子纠缠体系的高精度、可编程、且任意通用量子操控和量子测量。       研究进一步利用该高维光量子芯片技术,验证高维度量子纠缠系统的强量子纠缠关联特性,包括普适化贝尔不等式和EPR导引不等式等,证明量子物理和经典物理定律的重要区别。例如,对4维度量子纠缠态,实验观察得到了2.867±0.014的贝尔参数,不仅成功违背经典物理定律61.9个标准差,而且超过普通二维纠缠体系的最大可到达值的2.8个标准差。研究还首次实现高维量子系统的贝尔自检测和量子随机放大等新功能,例如,对3维度最大纠缠态和部分纠缠态的自检测保真度约为76%,对14维以下纠缠态均实现了量子随机放大功能。
北京大学 2021-04-11
首页 上一页 1 2
  • ...
  • 17 18 19
  • ...
  • 189 190 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    64届高博会于2026年5月在南昌举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1