高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
一种声学超材料悬置隔振结构
本发明公开了一种声学超材料悬置隔振结构,该悬置隔振结构由弹性薄膜以及设置于弹性薄膜上下两侧的两块包裹层呈弓字形折叠而成,所述包裹层上设置有周期性的开口,每个开口处的弹性薄膜上设置有质量块。本发明提供的声学超材料悬置隔振结构,兼具多层阻尼减振及声学超材料隔振功能,具有低频振动衰减能力强、易于实现选频衰减等突出优点。弓字形折叠板结构可以满足大范围的悬置刚度设计需求,且无高频硬化问题。整体而言,结构简单,设计性好,且所使用基础材料皆为常规材料,易于批量化加工、生产,值得在业内推广。
西南交通大学 2016-10-19
纤维增强复合材料保温板的制备
研究了纤维增强复合材料保温板性能影响因素,确定能满足 A 级防火要求的纤维增强复合材料保温板的制备配合比。采用此质量配合比制备的纤维增强复合材料保温板可以达到相当好的性能效果;制备工艺简单易行,操作方便。
扬州大学 2021-04-14
高性能块体铝基原位纳米复合材料
铝基原位(In-situ)纳米复合材料是以铝合金为基体、反应合成纳米陶瓷颗粒为增强体的新兴高性能纳米复合材料,独特的原位纳米增强体、复杂的陶瓷颗粒/金属铝合金界面结构、复合构型特征等结构特点,赋予其高的比强度、出色的抗疲劳能力、良好的耐热性、耐磨性以及高阻尼等结构-功能一体化特性,在航空航天、国防军事、交通运输、电子信息和精密仪器等高技术领域具有广阔的应用前景,成为纳米材料与金属材料交叉领域中新兴的高性能复合材料之一。 然而,该材料涉及到原子物理、凝聚态物理、化学、界面科学、纳米材料
江苏大学 2021-04-14
高性能镁合金及镁基复合材料
本项目在高性能镁合金以及镁基复合材料的制备和成型工艺、变形行为、微观结构、力学性能、阻尼特性、摩擦磨损行为、机械加工、表面处理等方面开展了大量的系统研究,开发了轻质、高比强、高比刚并同时具有高阻尼的新型镁合金及镁基复合材料。这些新型镁合金及其复合材料具有广泛的应用前景。
哈尔滨工业大学 2021-04-14
可切削加工的纳米复相陶瓷材料
陶瓷材料具有耐高温、抗氧化、耐腐蚀、电绝缘等一系列优点。但是,其质地脆硬,难以机械切削加工。利用纳米复合技术,在氧化铝、碳化硅、氮化硅等陶瓷基体中,原位添加形成纳米可切削相,制备出纳米复相可加工陶瓷,能够用普通刀具车削、铣削、钻孔,制造形状复杂、尺寸精密的陶瓷部件。 近年来,在国家863项目支持下,本课题组致力于高性能可加工陶瓷材料的研发工作,采用湿化学方法,结合热压或常压烧结,制备出多种可加工陶瓷材料及部件,保持了陶瓷材材的耐高温、抗氧化、耐腐蚀和电绝缘性能,同时,能够机械加工出复
江苏大学 2021-04-14
微纳材料表面纳米包覆技术和装备
微纳材料表面纳米包覆是提升其功能特性的关键,是微纳制造研究领域的国际前沿,亦是航空航天、能源环保、发光显示等领域的共用技术。纳米包覆面临着精度不可控、不均匀、不致密等“顽疾”。团队提出多场耦合克服微纳材料内聚力的离心流化策略,保障了微纳材料充分分散包覆后的固有物化特性;揭示离心压差补偿的动态包覆机理,实现了可控致密的均匀包覆层制备;提出行星流化的微纳材料分散策略,国际首创行星流化原子层沉积装备,批量一致性达99%以上。申报技术受到包括美国斯坦福大学、阿贡国家实验室等机构,美国、德国、加
华中科技大学 2021-04-14
高光效黄光LED材料与芯片制造技术
中心通过“装备与工艺的协同创新”,创新发展了具有自主产权的大科学装置—MOCVD高端装备,并在硅衬底上生长第三代半导体InGaN黄光LED材料,取得了历史性突破,将黄光LED的光效由国际上报道的不足10%,提升到了27.9%,结束了国际市场上长期缺乏高光效黄光LED的局面。国际同行、诺贝尔奖获得者中村修二教授高度称赞这项成果:“硅基黄光LED的技术水平国际领先,这是属于中国人首次发明的照明技术,它有非常大的价值。”陈良惠院士领衔的12位业内专家,对
南昌大学 2021-04-14
AI机器学习技术加速功能新材料的研发
1.痛点问题 新材料的设计与研发往往面临挑战:急需的新材料难以快速筛选设计,而设计出的新材料又难以找到高效且低成本的合成配方,拥有合成配方的新材料又会面临规模化的长周期探索。根据国家工业和信息化部对30余家大型骨干企业调查结果显示,130种关键材料中,有32%国内完全空白、54%虽能生产,但性能稳定性较差、只有14%左右可以完全自给,亟需新思路来解决我国新材料研发难题。本项目着眼于新材料研发,希望通过创建目前业内空白的智能化新材料研发范式,引领行业智能材料开发自动化服务与工艺的开发。 在数字化、智能化浪潮中,国家和各行业的产业界都非常看重科研的智能化升级。通过持续的交流与调研,我们发现许多企业和研发团队目前对智能研发存在大量潜在需求,而智能研究服务与工艺的同类竞品极少。因此,清华智研将作为一家高新科技企业,以AI赋能研发(AIEmpoweringResearch&Development)为使命,组建国际顶尖水平团队,向国内引进并自主开发世界前沿的AIforScience技术,打造世界级的AI未来实验室(World-ClassAIFutureLab)。 2.解决方案 本技术为新材料研发数字化智能服务平台,可在材料研发过程中对各个尺度以及不同研发阶段下进行智能化的加速及分析服务。以各种人工智能算法为核心,如主动学习算法,图神经网络,卷积神经网络等,我们根据不同材料体系的尺度包括三大方面:1.针对分子及晶体等微观尺度的功能材料研发,设计智能化的深度学习系统。2.针对二维功能材料及其功能性器件、催化剂、膜材料等宏观尺度,设计智能化的深度学习系统。3.针对功能材料研发的表征仪器等平台尺度,设计智能化的系统解决方案。这些智能化解决方案能极大地加速新材料尤其是碳中和相关材料的研发速度,从而大大地降低研发成本与时间,为企业获得有竞争优势的科研壁垒。 自动化和人工智能助力未来智能实验室的方方面面,从样品制备(称量固体、添加液体、超声处理.等),到合成(分配液体,控制温度,混合,测量pH值,干燥等)、表征(气相色谱,高效液相色谱,分光光度法等),通过自动化/机器人的辅助,可以有效提高可重复性,提高信噪比,加快实验速度。通过人工智能技术,将实验数据转换为可操作的智能指导,快速浏览并利用复杂的数据,提升认知能力。 智能化研发平台 3.合作需求 拟成立公司推动该项成果的产业化进程,希望对接 1)工程化、产品化所需的资源; 2)新能源、新材料领域合作企业。
清华大学 2022-09-23
高性能块体铝基原位纳米复合材料
项目简介铝基原位( In-situ)纳米复合材料是以铝合金为基体、反应合成纳米陶瓷颗粒为增强体的新兴高性能纳米复合材料,独特的原位纳米增强体、复杂的陶瓷颗粒/金属铝合金界面结构、 复合构型特征等结构特点,赋予其高的比强度、出色的抗疲劳能力、良好的耐热性、耐磨性以及高阻尼等结构-功能一体化特性,在航空航天、国防军事、交通运输、电子信息和精密仪器等高技术领域具有广阔的应用前景,成为纳米材料与金属材料交叉领域中新兴的高性能复合材料之一。然而,该材料涉及到原子物理、凝聚态物理、化
江苏大学 2021-04-14
可切削加工的纳米复相陶瓷材料
项目简介陶瓷材料具有耐高温、抗氧化、耐腐蚀、电绝缘等一系列优点。但是,其质地脆硬,难以机械切削加工。利用纳米复合技术,在氧化铝、碳化硅、氮化硅等陶瓷基体中,原位添加形成纳米可切削相,制备出纳米复相可加工陶瓷,能够用普通刀具车削、铣削、钻孔,制造形状复杂、尺寸精密的陶瓷部件。近年来,在国家 863 项目支持下,本课题组致力于高性能可加工陶瓷材料的研发工作,采用湿化学方法,结合热压或常压烧结,制备出多种可加工陶瓷材料及部件,保持了陶瓷材材的耐高温、抗氧化、耐腐蚀和电绝缘性能,
江苏大学 2021-04-14
首页 上一页 1 2
  • ...
  • 77 78 79
  • ...
  • 196 197 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    64届高博会于2026年5月在南昌举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1