高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
BDC-5变电站电能质量远程监测系统
电力系统与牵引变电所运行的电能质量测试不论对电气化铁道设计、工程改造、安全运行来说都是十分重要的。对新开通电气化铁道,供用电合同往往明确规定在牵引变电所入口处安装电能质量监测仪,用于电力负荷管理以及负序、的监视。我院在长期从事电气经铁道理论研究与工程实践的基础上,针对现场工程实际需要研制BDC-5型变电站电能质量远程监测系统。用于变电站运行的电能质量监测以及负载(如电力机车)特性测试,是电气工程及科研有力的测试工具。 BDC-5型变电站电能质量远程监测系统为基于计算机技术和现代测试技术的虚拟仪器,同时也是基于Internet网或局域网(LAN)测试的远程实时在线测试仪器。本系统有便携式和变电站控制屏固定安装两种形式。 1)便携式测试系统 数据采集箱尺寸为450mm×300mm×900mm;计算机为笔记本电脑。 2)屏式测试系统 数据采集箱尺寸为500mm(宽)×160mm(高)×450mm(长); 计算机为研华AWS-825P工作站。 尺寸为482 mm(宽)×360mm(高)×450mm(长)。 该系统便携式监测系统体积小、重量轻,一个工程师就可以独立完成携带,接线测试任务。本系统硬件采用传感器、信号调理数据采集卡以及计算机构成,监测系统软件由示波器、录波器、过程计录仪、波形分析以及过程统计等模块组块,。 本系统中文用户图形界面操作简单美观,虚拟仪器面板能实时显示波形、图表、数据和响应用户请求。使用鼠标即可在主画面上能灵活切换示波、录波,过程记录、波形分析及统计画面,用户只需作少量的选择和点击相应的按钮即可自动完成测试和统计。 本系统适用于电力经纬度、电气化铁道及其他用户变电站的单、三相电力负荷电能质量综合测试。本系统可实时监控各远程测量点的测量情况,实时地获得测量数据,在线状态检测,人机对话,实验记录等;有多种监控方式,工作方便灵活简便。 BDC-5型变电站电能质量远程监测系统具有以下基本测量模块: 示波器实时监视单相、三相负荷及牵引变电站主要运行指标: 1)110kv侧和27.5kv侧三相电压、三相电流波形、幅值及相位角。 2)电气量矢量关系。 3)电网频率。 4)单相、三相负荷有功功率、无功功率、功率因数。 5)110kv侧三相电压、三相电流的不平以及负序电压、负序电流值。 6)110kv侧各相电压及电流的各次分量幅值、相位角。 7)牵引变电所110kv母线电压综合畸变率。 变电站运行过程监测记录 以每天0时至24时作为过程监测周期,进行变电站运行过程监测记录并形成每天运行统计曲线及统计数据。 录波器 变电站16路模拟信号同步录波,每路信号采样频率为128点/周波。
西南交通大学 2021-04-13
一种多级变电站的短期负荷预测方法
本发明提供了一种多级变电站的短期负荷预测方法,包括获取 n 级变电站的历史数据,并对历史数据进行预处理;对预处理后的历 史数据进行处理,获得影响第 n 级变电站负荷的主要因素;建立预测 模型,并根据待预测日的第 n 级变电站的气象数据以及预测模型获得 第 n 级变电站任意时刻 t 的负荷预测结果;根据变电站和线路的参数 计算潮流获得第n-k+1级变电站中各个变电站和第n-k级变电站中各个 变电站之间的功率损耗;根据历史负荷和气象数据获得第 n 级变电站 任意时刻 t 的负荷预测结果;根据第 n 级变
华中科技大学 2021-04-14
一种可稳定动态充电的变电站巡检系统
本实用新型涉及磁谐振式无线充电技术,具体涉及一种可稳定动态充电的变电站巡检系统,包括发 射端线圈、中继线圈、位置检测线圈、比较模块、切换控制模块、蓄电池、机器人外壳、机器人充电模 块、接收端线圈、高频信号发射线圈、超级电容器、高清摄像头和电磁辐射屏蔽层;接收端线圈、高频 信号发射线圈、高清摄像头均与超级电容器电连接;发射端线圈包括两个 L 形线圈,两个 L 形线圈采用 非接触式对嵌排布,其对嵌部分线圈作为位置检测线圈;中继线圈铺设于地面。通过铺
武汉大学 2021-04-14
设备状态检修及风险预警
改变设备定期检修的错位现象(该检修的不检修,不该检修的使劲检修),实时采集现场设备运行数据及工况数据,以AI模型评价设备状态并预警未来风险,实现精准检修,节省成本并提高安全性,保障生产线满足生产机交货需求,减少零部件储备量。
重庆邮电大学 2025-02-21
地下水位在线监测设备 监测液位温度,液面到泵端水位变化的连续测量
WH311简述地下水位监测实施方法地下水位在线监测系统被广泛应用于地下水深井水位测量,矿山水位计深井测量,地热井水位测量。其测量范围能够达到100米,300米甚至1000米,主要是基于WH311内置超强抗高压高密封性传感器芯片,一体成型结构,三重防雷工艺。信号传输采用级别的抗拉抓力钢丝电缆,确保测量信号能实时的,高精度稳定的输出显示。 地下水位在线监测设备 监测液位温度,液面到泵端水位变化的连续测量   WH311地下水位在线监测系统工作原理:    WH311地下水位在线监测系统根据压力与水深成正比的静水压力原理,运用水压敏感集成元器件做深井水位测量仪传感器探头,当传感器探头固定在水下某一测点时,该测点以上水柱压力高度加上该点的高程,即可间接测量出水位高低(水面到井口的距离);直接测量出的是传感器探头以上深井的液位实际高度。     WH311地下水位监测仪主要技术指标     WH311地下水位监测仪生产工艺:    深圳市东方万和仪表有限公司引进欧洲的三重防雷,和六道防水工艺,保证了长期深井水下工作的IP68防护等级。     WH311地下水位监测仪产品特点   1、特别适合深井或地下水位监测   2、采用静压式原理,激光标定零点、满量程   3、厂级别铠装钢丝电缆   4、三重防雷模块,保障野外测量更安心   5、液位温度一体式,可同时测量温度和液位   6、量程可做到1000米深井液位测量   WH311地下水位监测仪应用   1实时监测深井地下水的实际水深,然后低位停泵(防止深井泵空转烧坏)。   深井液位监测因为其测量的特殊性,超声波等非接触的无法有效传输信号,磁翻板,气泡式无法做这么深的量程,故只有选择WH311投入式深井液位探头,保证在1000米水下(承受100Bar水下压力还要保证密封性).    WH311地下水位监测仪信号传输采用级别的聚氨酯钢丝电缆(放的过程中,一定要注意对电缆的保护),确保测量信号实时的,高精度稳定的输出。然后显示器会有两个继电器开关量输出,在低位的时候(这个值用户可以根据工艺自行设置)自动停泵。   地热温泉井温度液位一体式测量   很多地热温泉井需要实时监测实时的液位和温度变化,WH311-DZ温度液位一体式测量仪根据地热温泉井的特性而特殊设计,温度液位一体式探头直接传输温度和液位双信号,双4-20mA传输也可以RS485通讯协议输出。配套WH6双通道显示器,上面实时显示水位,下面实时显示温度。   WH311地下水位监测仪获得了欧盟,美国等多国认证   应用案列分析:    东方万和仪表的工程师帮助了贵州地质局,吉林大学地球学院,新疆地震局等数十家用户实现了深井液位实时监测和低位停泵功能。   SGS通标标准技术服务有限公司(通标、SGS中国、SGS通标)是全球公认检验、、测试和认证机构,WH311地下水深井水位测量仪通过了SGS通标的校准证书,证书编号:200006512,证书记载东方万和WH311的误差为0.009mA,实际精度超过千分之一,达到了万分之六误差范围之内。    东方万和仪表的工程师帮助了中铁四局,中国建筑第二工程局,葛洲坝南京地下空间等数十家用户实现了水位实时监测并带记录功能,数据可以用U盘直接导出。现在我们重点分析一下葛洲坝南京地下空间记录监测方案   WH311地下水位监测仪拥有了很多用户,从2013年到现在6年间,就已经有超过100000家用户选型WH311水位测量仪,解决深井液位显示报警的问题。东方万和仪表先后为贵州地质局500-1000米深井液位监测系统,武汉地震局80米地下水位监测项目,清华大学,吉林大学地球学院地下水深井液位监测.万和仪表致力于给用户工程师提供高精度,高稳定的测量方案,为用户解决深井液位测量难的问题。
深圳市东方万和仪表有限公司 2026-01-09
变电站巡检机器人关键技术研究及开发
围绕以机器人代替巡视人员完成室外变电站设备日常检查的巡检工作新模 式,重点突破巡检机器人的自主导航、半自主导航、网络环境下的人机交互控制、 非接触式设备检测等关键技术,研制变电站巡检机器人系统,完成集成演示并实 现示范应用,引领特种智能机器人技术发展,为少人值班、无人值班变电站的安 全运行提供技术保障。技术关键1) 巡检机器人的定位、导航算法、巡检机器人的定位:导航算法是巡检机器人实现自主运动的核心技术,可提 高机器人的智能。2) 自动返回充电技术:自动返回充电技术是提高机器人工作效率,保证其自主工作的关键。3) 网络环境下的机器人遥控技术 应用前景::随着国民经济的快速发展,我国超高压、高压变电站的数量还将在相当长的 一段时间内保持快速增长。变电站对变电站巡检机器人的需求量将不断增大,推 广应用前景更广阔。变电站巡检机器人目前在500KV变电站已有推广应用,随 着变电站巡检机器人性能提高、功能完善、价格下降,有望进一步扩大在500KV 及以下变电站推广应用。
重庆大学 2021-04-11
变电站巡检机器人关键技术研究及开发
围绕以机器人代替巡视人员完成室外变电站设备日常检查的巡检工作新模 式,重点突破巡检机器人的自主导航、半自主导航、网络环境下的人机交互控制、 非接触式设备检测等关键技术,研制变电站巡检机器人系统,完成集成演示并实 现示范应用,引领特种智能机器人技术发展,为少人值班、无人值班变电站的安 全运行提供技术保障。 技术关键 1) 巡检机器人的定位、导航算法 巡检机器人的定位、导航算法是巡检机器人实现自主运动的核心技术,可提 高机器人的智能。 2) 自动返回充电技术自动返回充电技术是提高机器人工作效率,保证其自主工作的关键。 3) 网络环境下的机器人遥控技术 应用前景: 随着国民经济的快速发展,我国超高压、高压变电站的数量还将在相当长的 一段时间内保持快速增长。变电站对变电站巡检机器人的需求量将不断增大,推 广应用前景更广阔。变电站巡检机器人目前在500KV变电站已有推广应用,随 着变电站巡检机器人性能提高、功能完善、价格下降,有望进一步扩大在500KV 及以下变电站推广应用。市场及经济效益分析: 预期经济、社会效益: 在无人值班变电站中,用机器人代替人工进行日常的设备巡视,可以大大提 高变电站运行的自动化水平,达到减人增效的目的,具有显著的经济效益。以nokv的无人值班变电站为例,从定量的数据进行分析。根据重庆市电力 公司《变电站运行管理规范》的规定,无人值班变电站操作队原则上实行三班 人员一班制,其所辖llOkV变电站为5-7个时,每班至少应配备6人,其中值班 员不少于3人,以人均薪酬3万元/年计算,一年的人工薪酬至少54 (3X6X3) 万元,操作队工作用车的路油费约3万元/年,其它办公耗材等费用约1万元/年, 共58万元/年,平均下来,一个llOkV变电站基本费用(此处主要是计算操作队费 用,不包括设备调试、检修等其它生产费用)为8. 3〜11. 6万元/年。根据其主要 配置的不同,变电站巡检机器人的成本价也有所不同,大约在50万元左右,因 此,在llOkV无人值班变电站应用自动巡检机器人代替人工进行设备巡视可在 4〜6年内收回成本。同样计算,若是在220kV及以上变电站应用自动巡检机器人 代替人工,可望在4年内收回成本。此后,只需花费相对较少的费用对机器人进 行日常维护即可,与目前采用的人工巡视方式相比较而言,具有一次投资长期受 益的明显优势和经济效益。社会效益 采用变电站巡检机器人代替人员对设备进行巡视,可以提高巡检作业的水平, 提高工作效率和质量,帮助工作人员实时掌握变电站情况,及时发现潜在事故苗 头,避免事故,提高变电站安全运行水平;降低了巡检作业的危险,确保人生安 全和身体健康,保证了变电站的安全生 产。
重庆大学 2021-04-11
一种变电站绝缘子带电水冲洗机械臂
本实用新型公开了一种变电站绝缘子带电水冲洗机械臂,包括基座、刚性主臂、绝缘臂、高压水喷 头,所述刚性主臂下端与基座通过第一销轴铰接,所述基座上设有与第一销轴相连的第一驱动装置,刚 性主臂顶部与绝缘臂底部通过第二销轴铰接相连,刚性主臂上设有与第二销轴相连的第二驱动装置,所 述高压水喷头与绝缘臂顶部通过第三销轴铰接,所述绝缘臂上设有主动皮带轮和驱动主动皮带轮的第三 驱动装置,第三销轴上设有固定相连的从
武汉大学 2021-04-14
一种基于保护智能中心系统的变电站系统
本发明公开了一种基于保护智能中心系统的变电站系统。变电 站系统通过结合无线局域网、广域通信网和光纤通信网三种组网方式, 利用其各自优势实现了各变电站内部、各变电站之间以及保护智能中 心与各变电站之间的高效通信;同时,保护智能中心系统利用光纤通 信实现了其采集处理模块对变电站系统中各变电站运行数据的实时采 集,并通过其通信模块、故障位置判别模块和跳闸决策模块实现对采 集数据的分析计算,最终实现在变电站的站域保护退出检修后,由保 护智能中心系统作为故障变电站的后备保护系统取代故障变电站的保 护功能,极大
华中科技大学 2021-04-14
一种基于保护智能中心系统的变电站系统
本发明公开了一种基于保护智能中心系统的变电站系统。变电 站系统通过结合无线局域网、广域通信网和光纤通信网三种组网方式, 利用其各自优势实现了各变电站内部、各变电站之间以及保护智能中 心与各变电站之间的高效通信;同时,保护智能中心系统利用光纤通 信实现了其采集处理模块对变电站系统中各变电站运行数据的实时采 集,并通过其通信模块、故障位置判别模块和跳闸决策模块实现对采 集数据的分析计算,最终实现在变电站的站域保护退出检修后,由保 护智能中心系统作为故障变电站的后备保护系统取代故障变电站的保 护功能,极大
华中科技大学 2021-04-14
首页 上一页 1 2 3 4 5 6
  • ...
  • 129 130 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    64届高博会于2026年5月在南昌举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1