高等教育领域数字化综合服务平台
云上高博会服务平台
高校科技成果转化对接服务平台
大学生创新创业服务平台
登录
|
注册
|
搜索
搜 索
综合
项目
产品
日期筛选:
一周内
一月内
一年内
不限
高性能
运动
控制教学实验设备
本科学生或研究生在此装置上可进行的实验及其研究项目有14项:交流伺服电机的控制方式实验;NUT-I型交流伺服机床数控插补实验;编码器实验; NUT-I型交流伺服数控机床点动实验;NUT-I型交流伺服数控机床自动钻孔实验;闭环伺服系统的稳定性实验;闭环伺服系统的动态性能分析实验;NUT-I型交流伺服数控机床标准G代码实验;位置伺服系统的精度实验 ;交流伺服系统的速度误差系数实验;交流伺服系统可靠性实验;交流伺服系统典型应用实验--数控雕刻设计; VC++, VB编程控制实验研究;运动控制综合实验。
南京工业大学
2021-01-12
时空变尺度
运动
目标检测方法
本发明公开了一种时空变尺度运动目标检测方法,具体为:将·815·原始图像转换为反差图像;根据差分强度与帧间间隔的单调递增且收敛关系,得到次优帧间间隔<img file=""DDA00002692454800011.GIF""wi=""80"" he=""49"" /> 通 过 计 算 t0 和 <imgfile=""DDA00002692454800012.GIF"" wi=""133"" he=""57"" /
华中科技大学
2021-04-14
基于
运动
分析的异常行为监控
Ø 随着国内外对公共安全问题的重视,安全监控在预防和制止危险行为和事件的发生上起着越来越重要的作用。然而传统的视频监控发展到今天,主要采用回溯性模式,即在危险发生后进行分析和追查,这是因为仅靠人力去分析难以得到及时有效的处理。而智能化视觉监控的应用,使监控从回溯性转变成预防性,利用计算机视觉技术分析理解人的运动,并提供记录和报警,有助于改善公共场所的安全监控水平。本技术的研究致力于从最本质的图像运动信息出发,直接获取高层人体行为信息,避免了中间过程的复杂性和不确定性,以提高算法的效率和鲁棒
北京理工大学
2021-04-14
惯性导航系统
运动
对准技术
本技术涉及一种惯性导航系统的运动对准方法,即如何在运动情况下借助GNSS信息提供惯性导航系统的初始姿态。在舰载机、制导弹药、水下无人潜航器和地面机动车辆等应用中,要求INS能够在运动过程中进行对准。目前运动对准的主流方法借鉴了静态或准静态情况下的实现思路,即通常包括粗对准和精对准两个阶段。粗对准用于得到粗略的初始姿态,为精对准提供初始值。精对准通常采用基于泰勒级数展开的非线性滤波方法,如一阶线性近似的扩展卡尔曼滤波EKF等。采用EKF等非线性滤波方法进行精对准,需要知道较准确的惯性器件,例如陀螺和加速度计,以及外部速度/位置信息的噪声特性,而且要求粗对准提供的初始姿态误差不能过大,否则滤波器将不能在规定的时间内收敛到理想的精对准结果,有时甚至发散。 在本技术考虑的应用场合中,INS安装在运动载体上,INS的速度和位置信息由GPS或其他外部信息源给出。 本技术的特色和优势:在没有任何姿态先验初值的情况下可实现惯性导航系统的快速姿态对准,无需知道惯性器件及外部速度/位置信息的噪声特性,无需任何姿态初值,具有绝对的计算稳定性,不存在发散的情况,只要速度/位置辅助信息有效,能够在任意运动情况下实现姿态对准,大幅缩短载体导航前的准备时间。 飞行试验测试典型结果:其中S1为上升段,S2为转弯段,S3为下降段。数据长度均为100s。下表分别给出了三个姿态误差角在5s,10s,20s和100s时情况:
上海交通大学
2021-04-13
运动
神经元模型
XM-618A运动神经元模型 XM-618A运动神经元模型由神经元胞体和神经纤维在电子显微镜下的放大结构2个部件组成,并显示神经细胞轴丘、树突、尼氏体、神经丝、髓鞘板层、雪旺细胞、朗飞结以及微管等结构。 尺寸:放大2500倍,30×42×12cm 材质:PVC材料
上海欣曼科教设备有限公司
2021-08-23
《机械臂
运动
算法》STEAM主题课程
产品详细介绍 机械臂运动算法STEAM主题课程 项目背景 随着工业 4.0 科技革命的到来,工业机器人已成为工业化程度的重要标志。机械臂是最为典型也是最早出现的工业机器人,它可以代替人的繁重劳动以实现生产的机械化和自动化,提高生产效率的同时避免人身事故的发生。机械臂课程的学习可以培养学生将科学技术应用于日常生活、社会实践的意识。 在本项目中,学生可借助机械臂运动算法套件与人工智能与编程教学系统,了解关节机械臂和伸缩机械臂的原理及特点,搭建不同类型机械臂并通过编程实现智能控制。 课程性质 这是一门以项目式教学开展的跨学科课程,以基于建构主义理论的 5E 教学模式作为指导,结合了 中小学信息技术课程标准与编程教学特色。 课程目标 1.知识与技能 ⚫ 了解机械臂的类型及其在现实生活中的应用。 ⚫ 掌握关节机械臂和伸缩机械臂的结构特点,设计并制作相应模型。 ⚫ 学习图形化编程或 C++代码编程的基础知识,使模型完成实际任务。 ⚫ 掌握机械臂运动算法的设计、编写及调试。 2.过程与方法 ⚫ 通过观察、查阅相关资料等活动,培养对信息的有效性、客观性做出判断的意识,发展分析概括能力。 ⚫ 通过机械臂模型的搭建和编程,发展编程思维和工程思维能力。 ⚫ 在完成模型设计和算法设计过程中,提高分析问题和解决问题能力,养成自学能力。 3.情感态度与价值观 ⚫ 了解机械臂在日常生活中的实际应用,萌发将科学技术应用于日常生活、社会实践的意识。 ⚫ 养成实事求是,尊重自然规律的科学态度。 ⚫ 关注科学技术对社会发展、自然环境及人类生活的影响。
广州八爪鱼教育科技有限公司
2021-08-23
单轴直线电机
运动
平台
产品详细介绍技术指标:SM2-2-544型直线电机 MicroE MII1600直线光栅编码器 Har5/60或HN4/150伺服驱动器 24VDC 10A直流电源 Hiwin直线导轨 安装底板及机械限位 Composer或MotionControl上位机调试软件 客户提供的PC机
北京慧摩森电子系统技术有限公司
2021-08-23
运动
神经元装片
宁波华茂文教股份有限公司
2021-08-23
51005多种多样的
运动
形式
宁波华茂文教股份有限公司
2021-08-23
高速公路与
关联
城市快速路交通信息共享与协同控制系统
该项目是863计划项目,现处于实验室研究阶段。项目成果受专利保护。 1、项目概述 本项目针对高速公路进出城路段交通拥堵严重、事故频发,以及高速公路监控系统和城市快速路监控系统各自为政、协同性差的普遍现象,构建了基于互联网的分布式交通特征信息共享平台,实现了不同监控系统的信息共享;借助信息共享平台,系统分析了结合部的动态交通特征,提出了适应不同交通条件的短时交通特征预测技术;采用分层递阶控制和神经网络控制的方法,研发了多匝道的协同控制系统软件,并实现了结合部道路交通系统的微观仿真。 2、技术创新点 在监控系统的信息共享研究方面,初步建立了交通特征信息共享的平台,其中对异构监控系统之间交通特征级信息共享的内容和模式进行了系统分析,对异构信息进行了融合处理,实现了特征级信息的发布。 在短时交通特征预测研究方面,已对京津塘高速公路及北京市快速环路监控系统的海量交通流实测数据进行了特征与关联分析,完成了短时交通特征的预测,并实现了交通拥挤的预判。 在结合部的协同控制方面,利用模糊神经网络的建模和学习方法,对高速公路多匝道控制系统算法进行设计,并进行了控制效果仿真。 3、能为产业解决的关键技术 (1)基于服务水平的特征级交通动态信息融合技术 针对目前高速公路和城市快速路监控系统所采集的交通流基础数据格式和像素级融合技术都有所不同,控制目标参数不统一的现实情况,项目提出的交通特征信息共享平台首先要处理现有高速公路和城市快速路服务水平判定标准不统一的问题,其次需要解决区域交通监控系统的特征级数据融合问题,寻求基于服务水平的动态信息融合技术和方法。 (2)交通特征信息共享平台的设计技术 针对集中式信息共享平台投资大、实施困难的缺点,提出采用成熟的互联网技术,以及分布式技术建立交通信息共享平台,为异构监控系统的信息共享模式提供了一种新的建设思路。不需要增加额外的硬件投资、操作方便,就现有的管理体制来说,也容易实现。 (3)基于关联分析和智能控制技术的短时交通特征预测模型 将时间序列理论与关联理论引入交通状态分析,并根据不同交通条件建立的短时交通预测模型,在很大程度上提高了预测方法的实时性、准确性和可靠性,有利于预测技术的应用和推广。 (4)高速公路和城市快速路结合部实现协同控制的关键技术 基于区域道路交通网络动态信息采集系统数据资源的综合利用与共享,在交通服务水平判定技术的支持下,运用系统论、控制论的思想以及智能交通系统工程的理论方法,实现高速公路和城市快速路结合部的协同控制。 4、相关的行业发展水平,以及同类技术产品或成果比较 目前,我国已建设的交通信息系统中,各子系统基本上是作为一个个分支存在的,不仅子系统自身的数据尚未实现充分融合,集成度很低,而且系统之间存在行政分割问题,异构情况严重;在信息共享平台设计上,大都采用集中式为主,需要新建一个监控总中心,投资大,操作困难。 与本项目所提出的预测思路及预测方法相比,现有预测方法的适用性方面还存在不少缺陷。 目前,我国高速公路和城市快速路交通控制所采取的区域控制策略尚未形成较成熟的控制模式,高速公路和城市快速路的协同控制模式更是处于起步阶段,尚未形成成熟的技术产品。 应用范围: 本课题针对的主要对象是高速公路与城市快速路的结合部,课题研究成果不仅充分利用了现有的道路监控系统硬件资源,节省了建设成本,而且可以满足结合部的交通控制与管理需要,具有较强的应用和推广价值。在实际的应用和推广中,还需进一步扩充和细化协同控制目标,优化大范围内的多匝道协同控制模型及其算法,并对具体的控制策略和控制设施进行详细设计,以提升协同控制的实际效果。 预期效果: 运用系统论和其他相关领域研究的最新成果,探索建立区域高速公路和城市快速路交通信息共享平台的新思路和新方法,并在系统平台的基础上研究协同控制的策略和方法,并形成整套协同控制系统算法和软件。在实践中,研究成果能够得到较好的应用,并且能够部分解决高速公路和城市快速路结合部的交通问题。
北京交通大学
2021-04-13
首页
上一页
1
2
...
9
10
11
...
24
25
下一页
尾页
热搜推荐:
1
高校实验室分级分类管理平台
2
云上展厅已成功吸引1万余家企业入驻!
3
第62届高博会圆满落幕,明年春天相约春城!