高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
一种基于强迫关断桥式换流的重复脉冲功率电源
本发明公开了一种基于强迫关断桥式换流的重复脉冲功率电源, 它采用 H 桥结构,具体包括充电机、储能电容、上放电支路、下放电 支路、上能量回馈支路、下能量回馈支路和强制关断回路;通过采用 能量回馈支路的形式,可以调节感性负载上的电流脉宽,使得电流脉 宽可控;通过开关强迫关断支路,可以实现负载储能的回收,回收率 最大可达到负载电流时负载储能的 90%以上,实现了节能环保,并且 减少了下一个工作周期所需要的充电能量;根据不同的具体实施方式, 本发明可以对负载上电流脉宽进行调节,同时对负载上能量进行回收,
华中科技大学 2021-04-14
可远程控制的光网联合供电多路直流电源
目前光伏发电还存在输出不稳定,易受外部条件影响等缺点。在实际应用当中,通常需要增加储能装置来保证电路光伏发电系统输出 的稳定性,这样必然会增加系统的成本;同时储能装置可能会引入一 些重金属元素,对环境造成一定的影响。另外,传统的直流电源通常 是由电网供能,并且很少具备远程控制功能,大大的限制了用户的使用范围。 本项目提出了一种新型多路直流电源的设计方法:采用光伏发电 和电网联合供电策略,来减少电能的消耗;采用无线控制技术,来实 现对电源的远程控制,为在有毒、封闭等特殊环境中应用电源提供了 一条可行的途径。同时结合激光测距仪的应用背景,设计了一种可输 出三路电压的小功率直流电源,其中高压支路可在输入为 5 V 到 30 V 时,输出 70 V 到 203 V 连续可调的直流高压,其驱动能力可满足一 般的雪崩二极管工作需要。测试结果表明,该电源可通过手机实现远程控制,其输出端纹波电压较小,可以满足一般的应用需求。
南开大学 2021-04-13
物联网智能电源管理器20A 6路—RB6-30A
物联网智能电源管理系统是各类音视频工程“最佳合作伙伴”。它具有可编程电源管理器系统,可做实景数据反馈监测及控制,采用电工标准,专业的电气结构设计;单路输出为30A,总输出电流100A,6路空开,其中3路配置应急备份;比传统空开具备更好的短路保护、漏电保护、过流保护。附带Web网页界面,可实时查询每路电流、电压、温度、开/关状态、断路、用电量等数据。附带Web功能控制网关端口为RJ45,可选配定义API控制级联端口为RS485。开放特有的开发接口,可供客户进行二次开发,完美融入各大系统和平台。
音王电声股份有限公司 2022-07-02
物联网智能电源管理器20A 15路—RP15-20A
物联网智能电源管理系统是各类音视频工程“最佳合作伙伴”。它具有可编程电源管理器系统,可做实景数据反馈监测及控制,采用电工标准,专业的电气结构设计;单路输出为20A,总输出电流100A,15路空开;比传统空开具备更好的短路保护、漏电保护、过流保护。附带Web网页界面,可实时查询每路电流、电压、温度、开/关状态、断路、用电量等数据。附带Web功能控制网关端口为RJ45,可选配定义API控制级联端口为RS485。开放特有的开发接口,可供客户进行二次开发,完美融入各大系统和平台。
音王电声股份有限公司 2022-07-02
一种用压电元件对电机定子端盖振动主动控制的端盖结构
本实用新型公开了一种用压电元件对电机定子端盖振动主动控制的端盖结构。包括压电执行器、振动传感器、振动控制器和功率放大器,电机定子端盖表面上固定铺设有压电执行器及振动传感器,振动传感器检测采集电机定子的振动信号并发送给振动控制器,振动控制器驱动铺设在电机定子端盖上的压电执行器来改变电机定子端盖的动力特性,从而实现对电机定子的机械及电磁振动和噪声进行主动控制。本实用新型能够对电机定子端盖的振动进行主动控制,使电机的振动和噪声得到显著地减小。
浙江大学 2021-04-13
特高压设备用增强型环氧树脂体系开发与应用关键技术
芳纶基环氧树脂开发与应用 1、技术分析 低粘度液体芳纶基环氧树脂,既保留芳纶纤维的骨架结构又引入环氧基团,还引入柔性的醚键,与芳纶纤维及环氧树脂的相容性均较好,起到桥梁作用,可在不破坏芳纶纤维本体结构情况下,解决了芳纶纤维与环氧树脂基体间界面粘结性问题,同时也能增加环氧树脂基体的韧性;不改变现有复合材料生产工艺,可操作性强,可实现工业化大规模生产,具有非常强的国内外竞争力及产业化应用前景。 2、应用范围及目前应用状态 特种环氧树脂复合材料相比于金属材料,具有轻质、耐磨损的性能优势,用于大型客机、商务飞机、固体火箭发动机壳体和卫星等结构部件,可有效减轻机身自重,节约飞机燃料的使用。在新一代通信技术方面,芳纶可增加光缆的刚性和强度,广泛应用于室内外光纤和电力缆的增强件,对推动我国新一代通信技术的发展起到重要作用。在电子电器相关领域,日本松下电器公司在浸渗高耐热的环氧树脂固化芳纶无纺布上贴合铜箔而制成印刷线路基板。特种环氧树脂复合材料兼具优异的电绝缘和耐热性能等优点,可作为耐高温绝缘材料应用于电动机、变压器、电抗器等电力设备中,同时因其优异的力学性能也可用于绝缘拉杆及绝缘支撑器件。 目前应用状态:完成芳纶基环氧树脂增强E-51固化物应用研究,探索了芳纶基环氧树脂对芳纶织物-环氧树脂复合材料之间的界面性能的影响。 (1)芳纶基环氧树脂增强E-51固化物应用研究 选择环氧值为最大条件下制备的芳纶基环氧树脂,将芳纶基环氧树脂添加量分别为 E-51质量分数的2.5%、5%、7.5%与 E-51 混合后,经二乙烯三胺固化,根据国标制得标准样条,样条如图1所示。 (a)拉伸样条      (b)弯曲、耐冲击样条图1  固化样条 表1 掺入百分比的2号样品的固化物力学性能 2号样品掺入量 /% 拉伸强度 /MPa 断裂伸长率 /% 弯曲强度 /MPa 冲击强度 kJ/m2 0 31.55 1.65 107.08 5.42 2.5 60.08 3.11 96.04 7.96 5 68.94 3.96 128.65 11.25 7.5 44.64 2.54 97.07 11.34 如表1所示,掺入量的增加,固化物拉伸强度、断裂伸长率和弯曲强度均呈现先增后减趋势,在E-51中添加5%时,弯曲强度略有提高,拉伸强度提高2.2倍,断裂伸长率提高2.4倍,抗冲击强度提高2.1倍。主要是因为芳纶基环氧树脂液体本身具有刚性苯环,同时也含有柔性的烷基侧链,并以环氧基封端,提高了与树脂基体的相容性,将刚性结构交联到体系当中,提高了体系的力学强度,因此掺入芳纶基环氧树脂液体后拉伸强度和断裂伸长率均提高了。而冲击强度保持上升趋势,掺入量超过5%后基本不再发生变化。 (2)芳纶基环氧树脂对芳纶织物-环氧树脂复合材料制备 取一定量环氧树脂,常温下加入一定比例的芳纶基环氧树脂,再将固化剂(DEDDM)加入到上述混合物中(胺值与环氧值等当量),搅拌均匀后,再按真空干燥箱中,抽真空30min。采用手糊法制备芳纶织物/环氧树脂复合材料,铺好后盖上离型纸放入80℃压机中加压,使树脂与芳纶纤维布浸渍,将平板硫化机升温至140℃,将脱模布和离型纸放入,铺厚3mm放在模具中,将140℃/1MPa下保压15min,再将压力升至10MPa,保温固化2.5h,冷却至室温开模,如图2所示。 图2  芳纶织物-环氧树脂复合材料 3、前景及经济社会效益分析 本项目根据芳纶纤维和环氧树脂的结构特点,设计和制备一种具有“两亲结构”的新型芳纶基环氧树脂。该树脂具有芳纶的骨架结构和环氧丙烷的侧链。分子中的芳纶骨架部分与芳纶织物纤维的结构相同,有利于两者之间的互相亲和。而芳纶基环氧树脂分子中的环氧基团与环氧树脂的结构具有相似性,与环氧树脂具有很好的相容性。芳纶基环氧树脂能广泛应用于电缆增强、防弹背心、运动织物、登山绳、防割手套和绝缘纸产品中,带动更多收益效应。 蓖麻油基环氧树脂开发与应用 1.研究背景及意义 目前我国已是世界上塑料制品生产和消费最大的国家,环氧树脂具有优异的粘接强度,良好的介电性能,制品尺寸稳定性好、硬度高、柔韧性较好、对碱及大部分溶剂稳定,是一种常见的应用非常广泛的热固性树脂塑料,目前全球环氧树脂年产量达到250万吨左右,需求量巨大。其中双酚A型环氧树脂用量最广泛,占环氧树脂总量的85%以上,67%以上的双酚A型环氧树脂则依赖于石化资源,同时其存在着毒性问题。 目前,国内外对于生物基热固性树脂的研究相对越来越热,其中,植物油以其来源广、产量大、价格低的优势,而备受广泛研究,目前有关植物油基增塑剂和环氧树脂的研究主要包括大豆油基、桐油基、蓖麻油基、甘油基、松香基等。 蓖麻是世界十大油料和四大不可食用油料作物之一,我国是世界上栽培蓖麻和生产蓖麻籽的主要国家之一,种植面积和产量曾一度跃居世界第一,蓖麻油是重要的化工原料,称作“土地里种出的石油”。 蓖麻油的基本结构: 羟基平均官能度约2.7,羟值为156~165 mg/g,碘值80~90 g/100g,皂化值为170~190 mg/g。 2.技术路线 (1)环氧蓖麻油缩水甘油醚的合成(ECOGE) 环氧蓖麻油缩水甘油醚的合成采用液体酸多相催化法,其原理是有机酸被过氧化氢预氧化为过氧化有机酸,再将蓖麻油缩水甘油醚氧化为环氧蓖麻油缩水甘油醚,反应原理如下式所示。 (2)蓖麻油多元醇的合成(COP) 选择不同催化反应体系,使用甲醇、乙醇、丙烯醇、苯酚、苯甲酸、丙烯酸等不同柔性、刚性基团对环氧蓖麻油环氧基团进行开环加成,增加分子中羟基,制备蓖麻油多元醇,为下一步蓖麻油多缩水甘油醚制备提供基础。此反应过程中,酸催化体系下发生亲电加成反应,碱催化体系下发生亲核加成反应,在开环过程中,注意避免酯键发生水解或者酯交换反应。 (3)蓖麻油多缩水甘油醚的合成(COPGE) 将上述蓖麻油多元醇与环氧氯丙烷反应,生成蓖麻油多缩水甘油醚,此反应有两种方法合成,一种是羟基与环氧氯丙烷发生开环闭环两步反应,最终生成缩水甘油醚;第二种方法是羟基和环氧氯丙烷直接一步法制得缩水甘油醚,但是环氧氯丙烷用量大。 3 蓖麻油基环氧树脂的结构与性能参数 (1)蓖麻油三缩水甘油醚(XY966) 环氧值:0.15~0.25 eq/100g 粘度(25℃):150~450mPa·s (2)氢化蓖麻油三缩水甘油醚(HCOGE) 环氧值 : 0.18 eq/100g 粘度(25℃) : 850 mPa·s (3)环氧蓖麻油三缩水甘油醚(ECOGE) 环氧值 :0.38 mol/100g 粘度(25℃) :650 mPa·s  (4)苯氧基蓖麻油多缩水甘油醚(POCOGE) 环氧值:0.24 eq/100g; 粘度(25℃) :950 mPa·s (4)苯酚-蓖麻油基多缩水甘油醚(PCOGE) 环氧值: 0.24 eq/100g; 粘度(25℃) : 1550 mPa·s (5)蓖麻油九缩水甘油醚( CONGE ) 环氧值:0.31 eq/100g, 粘度(25℃) :6050 mPa·s 3.本项目的特色与创新之处 (1)项目特色 1)本研究所采用的原料蓖麻油是植物基可再生资源,所合成的蓖麻油基环氧树脂是低毒环保可降解物质; 2)本研究采用酰化和环氧化反应,分别制得具有很好柔韧性的环氧乙酰蓖麻油,和具有很好刚性的环氧苯甲酰蓖麻油两种增塑剂; 3)本研究以柔性的蓖麻油为原料,引入刚性基团,合成一系列柔性和刚柔兼备蓖麻油基环氧树脂。 (2)项目创新之处 1)研究采用酰化和环氧化反应,分别制得具有很好柔韧性的环氧乙酰蓖麻油,和具有很好刚性的环氧苯甲酰蓖麻油两种增塑剂,反应步骤少,处理简单。其中环氧乙酰蓖麻油拉伸效率高于DOTP,而环氧苯甲酰蓖麻油的拉伸强度和断裂伸长率均高于DOTP,可应用于刚性需求高的场合; 2)本研究将蓖麻油碳碳双键环氧化后开环,后与环氧氯丙烷反应制得高环氧值的蓖麻油基环氧树脂,提高了固化物的交联密度,提高了环氧树脂的拉伸、弯曲等性能。 3)本研究在柔性的蓖麻油分子链中引入刚性基团,解决了蓖麻油基合成一系列刚柔兼备蓖麻油基环氧树脂,赋予环氧树脂配方良好的柔性、抗冲击性和耐热冲击性能。
南京林业大学 2021-05-10
一种多路径高压摆率环路运放电路及其实现方法
本发明公开一种多路径高压摆率环路运放电路的实现方法,包括三极级联反向器;添加一辅助路径,在环路运放抽取的过程中,辅助路径工作,增加压摆率;在小信号建立过程中,辅助路径停止工作,避免产生大的过冲。本发明还公开一种多路径高压摆率环路运放电路,包括三级级联反向器;还包括一个带偏置的反向器,所述带偏置的反向器与三级级联反向器连接。此种技术方案通过添加辅助路径,提高环路运放的压摆率,同时不影响环路运放的稳定性。
东南大学 2021-04-11
一种利用机器人拆装高压导线防震锤的末端工具及方法
本发明提供一种利用机器人拆装高压导线防震锤的末端工具及方法,末端工具包括夹紧末端和拆装 末端。夹紧末端包括两个夹爪、防震锤承托钩、防震锤托板、夹持丝杆、夹爪基座、以及驱动夹持丝杆 的驱动机构,可实现对防震锤定位夹紧及承托防震锤;拆装末端将防震锤螺母拧松,实现防震锤仅通过 防震锤挂板悬挂在导线上。夹紧末端和拆装末端分别安装于机器人平台上的三自由度作业臂和四自由度 作业臂,调节双作业臂各个关节,携带末端工具到达工作位,进而实现末端对防震锤的安拆。本
武汉大学 2021-04-14
一种单回高压直流输电系统谐波不稳定的判定方法
本发明公开了一种单回高压直流输电系统谐波不稳定的判定方法,其特点是本发明结合变压器的直流偏磁效应,将直流偏磁系数带入了推导过程,省去了交流侧的负序阻抗参数,只采用交流侧正序二次阻抗和直流侧基频阻抗来判定系统是否会发生谐波不稳定,提出了新的判定单回高压直流系统是否会发生谐波不稳定的方法。
四川大学 2016-10-27
一种高压输电线路绝缘子清扫与检测机器人
本发明公开了一种高压输电线路绝缘子清扫与检测机器人,包括可以绕旋转轴向两边打开的环形框 架和控制箱,环形框架包括通过多个辅助支架固定相连的上层支架和下层支架、以及通过清扫层升降机 构可上下移动的中层支架,上层支架上设有用于夹住绝缘子的上夹爪,上夹爪上设有检测装置,中层支 架上设有清扫装置和夹持绝缘子裙部的辅助夹爪,上层支架和下层支架之间还设有通过夹爪层升降机构 上下移动的下夹爪,与转轴相对的环形框
武汉大学 2021-04-14
首页 上一页 1 2
  • ...
  • 62 63 64
  • ...
  • 68 69 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    64届高博会于2026年5月在南昌举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1