高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
一种低烟无卤阻燃改性聚乙烯电线电缆护套料的开发及成果转化
中试阶段/nIFR通常由炭源、酸源和气源三种成分组成,在燃烧时通过三者之间的相互作用在聚合物表面迅速形成发泡结构的阻隔保护层,分隔气相与凝聚相,阻断热量、氧气和可燃气体的传输,从而抑制燃烧过程的进行。同时,膨胀炭层还具有抑滴的作用,可以有效缓解熔融PP流延起火的现象。因此,IFR可以有效阻燃PP。但是其阻燃效果主要依赖于炭层质量,而传统IFR成炭质量并不十分理想,必须要有大量炭源和酸源才能形成致密的膨胀炭层,导致其添加量居高不下,也因此提高IFR的成炭性能及改善炭层的强度和热稳定性成为提高IFR阻燃
武汉工程大学 2021-01-12
基于化学链的高含水中药渣高效气化制备合成气技术及关键设备开发
成果介绍针对我国中药废渣产率逐年增加、常规处理处置方法效率低、资源浪费严重及二次污染等迫切问题,开发以高含水的中药废渣为燃料,通过先进化学链燃料转化技术,将其就地转化为高品质合成气和热能的技术和工艺,实现中药渣的无害化、减量化和资源化综合利用。技术创新点及参数(1)避免使用纯氧做气化剂,具有比常规固体燃料气化、热解技术更高热效率和燃料转化率;(2)直接以高水分中药渣为燃料,充分利用生物质成分和水分,生成的合成气热值和品位均高于常规气化技术,或用来直接生产浓度较高的氢气用作车用燃料;(3)以廉价合成铁基材料、天然铁基材料或炼铝废弃物作为高温传氧材料,实现传氧、传热和催化气化功能,提高燃料转化率,大幅降低合成气中焦油含量;(4)反应器结构采用多级分步反应,并与传热-传质过程高度耦合集成,易于实现连续规模化生产。以上关键技术的开发,将瞄准氢气或合成气燃料生产及药企行业内废弃物能源资源化利用等目标,紧紧依靠强大的能源化工优势,避免同质化竞争导致的产业发展风险,确保技术开发成功的同时形成产业错位发展的优势。市场前景通过废弃中药渣的中高温气化方式生产高品质的合成气的综合效果最好,符合国家固体废弃物资源化和能源化利用政策,也可直接用于药企以替代部分燃料;产生的极少量生物质灰渣易于处理,在与相关中药企业密切合作中,形成优势互补,加速整体技术和关键设备开发,根据需求侧的行业分布、废弃物产地、燃料及产物运输等特点,逐步形成规模适中的、模块化的燃料转化平台。形成针对解决中药企业生物质废弃物的资源化、无害化和减量化的系统性综合解决方案与推广模式,建立示范基地,促进该领域的产业化。
东南大学 2021-04-13
含重金属工业污泥低能耗资源化利用关键技术开发与应用
随着工业和城市的发展,污水处理率的提高,城市污泥产量必然越来越大。污泥是一种很有利用价值的潜在资源,为了充分利用这种资源,减少环境公害,世界上许多国家都在大力发展污泥处置和利用的各种技术。相对于发达国家来讲,我国污泥处理利用技术还比较落后,同时考虑到我国是一个农业大国。因此,将经过稳定 化、无害化处理后的污泥进行土地循环利用,是我国污泥资源化利用较有前景的一种途径。鉴于污泥土地利用所涉及的研究与利用等方面的种种问题,要想达到安全有效的目标,政府有计划地组织环境保护部门同农业部门开展污泥土地利用方面
南京大学 2021-04-14
印刷电路板中金属与非金属的多侧线固体流态化气力输送 分离富集工艺
针对废弃电子电器资源化这一世界关注的环境问题,基于金属与非金属间所存在的 显著密度差以及固体流态化的特点,设计开发了固体流态化气流输送分离富集装置与工 艺。 1. 该工艺为以空气为介质的干法过程,产品无需干燥后处理,设备简单、操作方便、 可实现连续操作、过程控制容易且处理能力大; 2.分离过程在密闭设备内进行,空气中夹带的难以分离的微量细小飞扬粉尘经袋滤 器进行捕集,整个操作过程基本无粉尘产生; 3.该工艺过程可在一套设备上实现固体流态化分选与气力输送回收,配合多侧线 出料可便有效地对不同密度组分进行分离回收; 4.本发明以确保轻组份物料得以气力输送回收确定风机风量,较重组份物料借助 固体流态化类似液体的特性,经适宜位置侧线出料回收确保了通过较小的动力消耗实现 轻重组份的高效分离回收。
同济大学 2021-04-13
机械产品(汽车零部件)高强度铝合金铸造成型关键工艺的仿真模拟技术
成果简介: 该项技术针对机械产品铸造工艺的分析与改进,采用FLOW-3D或MagmaSoft软件进行铸件铸造过程中的充型、凝固过程进行数值模拟,分析其温度场、流场、压力场、氧化物含量、充填顺序以及缺陷分布等的变化情况,预测铸件的质量,掌握初期设计潜在的问题点,为初始设计阶段的模具设计、铸造工艺参数的制定与修改提供依据。
南京工业大学 2021-01-12
采用改进三级同轴电纺工艺制备芯鞘结构聚合物-卵磷脂复合载 药纳米纤维。
上海理工大学 2021-01-12
抗丙肝药物索非布韦关键含氟医药中间体材料的制备 工艺研究及产业化
索非布韦(又译为索氟布韦,英文名 Sofosbuvir,CAS:1190307- 88-0)是全球首个丙型肝炎病毒(HCV)NS5B 聚合酶核苷酸类似物抑 制剂,用于治疗慢性丙型肝炎,目前国外已有产品在销售,且利润可 观。国内还没有此类药物,本项目具有重大的发展前景。 采用本课题组开发的新型氟取代反应,设计和开发了一条经济、 绿色和环保的具有巨大临床价值和市场价值抗丙肝药物索非布韦及 其关键含氟医药中间体的制备工艺。本项目的目的是对本课题组开发 的新颖制备工艺进行中试放大研究,进而实现商业化规模制备,从而 产生良好的社会效益和经济效益。 依托南开大学化学院良好的科研平台,以及本课题组多年积累的 有机氟化学及合成有机化学的基础研究成果,我们对具有巨大临床价 值和市场价值的抗丙肝新药索非布韦及其关键含氟中间体的制备工 艺进行优化。小试规模研究结果表明,本制备工艺能以良好的经济性、 兼顾环保、安全等考量获得预期质量要求的目标产品。后期通过小试 放大研究、中试研究和商业化生产确认等产业化开发程序。 
南开大学 2021-04-13
技术需求;酿酒、调味品等食品酿造工艺工程类及精细化工领域装备技术合作
酿酒、调味品等食品酿造工艺工程类及精细化工领域装备技术合作
泰山恒信有限公司 2021-08-23
基于工业机器人的大口径光学元件高效精密磨抛加工关键技术与装备开发
国内外大科学工程研究中如激光聚变,空间光学,天文望远镜等,都对大口径光学元件提出了较大的需求和较高的要求,而国内大口径光学加工制造能力还远落后于美国,欧洲等国家。随着国内对大口径光学元件的需求越来越大,精度越来越高,口径越来越大,孔径也不断增大,适用于大尺寸、非球面、高效、精密的柔性加工技术已成为制约其发展和亟待解决的关键问题。利用智能化自动化技术生产取代传统手工低效率研磨已经成为必然趋势。为适应大口径光学元件的加工,结合现有成熟工业机器人技术条件,先进制造装备及控制实验室开展了多工具柔性磨抛复合加工技术的研究,利用工业机器人模拟手工研磨镜面加工技术,通过在末端关节安装的专门研发磨抛工具头对各型大口径平面及曲面类光学元件进行高效率研磨加工,还能根据光学元件面形检测得出的误差结果,专门开发了自主知识产权的软件能智能化地在光学表面相应的区域自动选择修正工具,并自动通过高效叠代算法得出合适的磨抛材料去除函数,并生成高精度光学表面加工程序,有效地控制加工大口径光学元件过程中产生的各种误差,特别是能有效克服“蹋边问题”,该成套技术不仅能大大提高大口径光学元件的抛光效率和加工精度,另外与采用精密数控机床加工相比还能有效降低企业设备采购与维护成本。 应用领域: 核聚变、空间光学、天文光学望远镜、光学镜头等涉及光学元件制造行业 技术指标: ? 实现直径1米的大口径光学元件磨抛加工; ? 直径500mm的平面反射镜有效口径范围面形精度达到PV=0.387λ、rms=0.063λ。
电子科技大学 2021-04-10
基于工业机器人的大口径光学元件高效精密磨抛加工关键技术与装备开发
国内外大科学工程研究中如激光聚变,空间光学,天文望远镜等,都对大口径光学元件提出了较大的需求和较高的要求,而国内大口径光学加工制造能力还远落后于美国,欧洲等国家。随着国内对大口径光学元件的需求越来越大,精度越来越高,口径越来越大,孔径也不断增大,适用于大尺寸、非球面、高效、精密的柔性加工技术已成为制约其发展和亟待解决的关键问题。利用智能化自动化技术生产取代传统手工低效率研磨已经成为必然趋势。为适应大口径光学元件的加工,结合现有成熟工业机器人技术条件,先进制造装备及控制实验室开展了多工具柔性磨抛复合加工技术的研究,利用工业机器人模拟手工研磨镜面加工技术,通过在末端关节安装的专门研发磨抛工具头对各型大口径平面及曲面类光学元件进行高效率研磨加工,还能根据光学元件面形检测得出的误差结果,专门开发了自主知识产权的软件能智能化地在光学表面相应的区域自动选择修正工具,并自动通过高效叠代算法得出合适的磨抛材料去除函数,并生成高精度光学表面加工程序,有效地控制加工大口径光学元件过程中产生的各种误差,特别是能有效克服“蹋边问题”,该成套技术不仅能大大提高大口径光学元件的抛光效率和加工精度,另外与采用精密数
电子科技大学 2021-04-10
首页 上一页 1 2
  • ...
  • 124 125 126 127 128 129 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    63届高博会于5月23日在长春举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1