高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
一种实现现场总线拓扑结构实时重构的通信单元
本发明公开了一种实现现场总线拓扑结构实时重构的通信单元,包括第一、第二数据处理模块和二个端口,二个端口均设有接收模块和发送模块,其中任一端口的接收模块均通过第一数据处理模块或第二数据处理模块与另一端口的发送模块连接,在第一、第二数据处理模块之间设置有双向电子开关。本发明采用一个双向电子开关即可实现数据流向的灵活切换。具有双环结构的主从通信系统中采用两个处理模块,分别处理各自通信链路上的数据信息信号,真正提高了一次通信操作中的数据信息信号冗余度,实现数据信息信号双环结构。
华中科技大学 2021-04-14
可视化、智能化通信资源展示系统V1.0
可视化、智能化通信资源展示系统
西华师范大学 2015-01-31
广州海格通信集团股份有限公司
广州海格通信集团股份有限公司(股票简称:海格通信,股票代码:002465)是国家创新型企业、全国电子信息百强企业之一的广州无线电集团的主要成员企业。海格通信是国家火炬计划重点高新技术企业、国家规划布局内重点软件企业,自2003年起连续入选中国软件业务收入前百家企业,拥有国家级企业技术中心、博士后科研工作站、广东省院士专家企业工作站,是全频段覆盖的无线通信与全产业链布局的北斗导航装备研制专家、电子信息系统解决方案提供商。 创立于2000年的海格通信,其历史可追溯到1956年,前身是诞生于计划经济时期的广州无线电厂(国营第七五〇厂)。2000年8月1日海格通信成立,2010年8月31日实现A股上市,公司是行业内用户覆盖最广、频段覆盖最宽、产品系列最全、最具竞争力的重点电子信息企业之一,行业领先的软件和信息服务供应商。公司主要业务覆盖“无线通信、北斗导航、航空航天、软件与信息服务”四大领域。 通过“产业+资本”双轮驱动,海格通信实现了新的跨越式发展,目前总资产超过100亿元,形成了“广州、北京、深圳、南京、成都、杭州、西安、武汉、长沙”等地域布局。全资子公司海格怡创是业界具有领先优势的通信信息技术服务商。控股子公司摩诘创新于2016年2月实现新三板挂牌(证券代码:836008),2017年,海格通信收购高新技术飞机零部件制造企业驰达飞机,拓展航空航天板块业务。 海格通信高度重视自主创新,坚持每年高比例投入技术研发,集结了一支高素质、稳定的骨干人才队伍,其中博士、硕士、学士占员工总数的50%,包括国务院津贴专家、全国“五一”劳动奖章获得者、广东省劳动模范、广州市劳动模范、广东省“五一”劳动奖章获得者、经理人及各类专业技术人员。 展望未来,围绕“以全球的视野,将海格通信建设成为无线通信、导航领域的最优秀现代企业”的战略目标,海格将坚持“高端高科技制造业、高端现代服务业”的战略定位,走“科技+文化”发展之路,朝着“我们的征途是银河天路”的伟大梦想迈进!
广州海格通信集团股份有限公司 2021-02-01
小转角双层石墨烯体系的结构和新奇量子物态研究进展
层间转角在层状堆垛的二维材料体系中提供了一个全新的自由度来调控其结构与性质。近几年,相关方面的研究引起了广泛的关注。早在2012年,何林课题组就开始关注转角对双层石墨烯结构和电学性质的影响,测量了不同转角双层石墨烯的两个范霍夫峰的峰间距能量与转角大小的关系[1],并预言该体系中的准粒子具有可调控的手征性[2],研究了应变结构在该体系产生的赝磁场和赝朗道能级[3]。2015年,何林团队发现双层转角石墨烯体系费米速度随角度减小而迅速下降,证明在转角为1.1度(第一魔转角)附近时费米速度降为零[4],并于2017年,在转角接近魔转角的双层石墨烯体系观察到强电子-电子相互作用[5]。2018年初MIT的Pablo课题组在魔角双层石墨烯观察到电子-电子相互作用导致的关联绝缘体态和超导态,魔角双层石墨烯物性研究迅速成为过去两年凝聚态物理研究的最大热点。 近期,何林课题组发展了一套方法,能够可控地制备利于扫描隧道显微镜系统(STM)研究的双层转角石墨烯,并利用STM研究了小角度双层石墨烯的性质,深入探索该体系由于电子-电子相互作用导致的平带简并度解除和新奇强关联量子物态的关联。例如,何林课题组与合作者发现当小转角体系的平带被部分填充时,电子-电子相互作用会解除平带的谷赝自旋简并度,在体系中产生很大的轨道磁矩(每个莫尔约10μ_B),由于轨道磁矩和磁场的耦合,谷极化态的劈裂能量会随着外加磁场线性增大[6]。同样的结果也在应变引起的平带中观察到了,当双层石墨烯的转角接近魔角时,体系中微小的应变结构可以使两个范霍夫峰之间出现一个新的零能量平带(赝朗道能级),何林课题组与合作者发现电子-电子相互作用会解除赝朗道能级的谷赝自旋简并度,产生轨道磁性态[7]。这些结果表明小转角石墨烯体系是研究二维轨道磁性态和量子反常霍尔效应的理想平台。在角度大于魔角的小转角双层石墨烯中,何林课题组与合作者证明电子-电子相互作用依然会起重要作用,并有可能产生完全不同于魔角双层石墨烯的新奇强关联量子物态。例如在1.49度的样品中,他们证明电子-电子相互作用解除了体系平带中的自旋和谷赝自旋的简并度,产生了一种全新的自旋和谷极化的金属态[8],这一结果进一步拓宽了转角体系新奇强关联量子物态的研究范围。 除了电学性质受层间转角的调制,在双层转角石墨烯体系,由于层间堆垛能与层内晶格畸变引起的应变能的竞争,其原子结构也会随着角度发生改变。最近,何林课题组系统研究了双层转角石墨烯结构随着角度的演化,发现当转角大于魔角时,体系可以看作两个独立的刚性石墨烯层发生扭转,层内晶格畸变几乎可以忽略(定义为非重构结构);当转角小于魔角时,由于莫尔条纹周期较大,层间堆垛能占主导,从而引起晶格畸变产生堆垛的畴界(domain wall)网格(定义为重构结构)。这种畴界的两边都是Bernal堆垛的双层石墨烯(分别为AB堆垛和BA堆垛),能传输谷极化的电流(图一)。我们利用STM证明非重构和重构的两种结构在魔角附近都能稳定存在。进一步,我们发现利用STM针尖脉冲可对魔角双层石墨烯的非重构和重构结构进行切换,从而开关其二维导电拓扑网格。同时,我们发现在强关联效应中起到重要作用的魔角双层石墨烯平带的带宽也能在这一过程中被调控[9]。相关成果近日刊发在物理学期刊《Physical Review Letters》上。何林教授课题组博士生刘亦文为第一作者,美国洛斯阿拉莫斯国家实验室的苏赢博士为文章的共同第一作者,何林教授为通讯作者。
北京师范大学 2021-02-01
小转角双层石墨烯体系的结构和新奇量子物态研究进展
层间转角在层状堆垛的二维材料体系中提供了一个全新的自由度来调控其结构与性质。近几年,相关方面的研究引起了广泛的关注。早在2012年,何林课题组就开始关注转角对双层石墨烯结构和电学性质的影响,测量了不同转角双层石墨烯的两个范霍夫峰的峰间距能量与转角大小的关系[1],并预言该体系中的准粒子具有可调控的手征性[2],研究了应变结构在该体系产生的赝磁场和赝朗道能级[3]。2015年,何林团队发现双层转角石墨烯体系费米速度随角度减小而迅速下降,证明在转角为1.1度(第一魔转角)附近时费米速度降为零[4],并于2017年,在转角接近魔转角的双层石墨烯体系观察到强电子-电子相互作用[5]。2018年初MIT的Pablo课题组在魔角双层石墨烯观察到电子-电子相互作用导致的关联绝缘体态和超导态,魔角双层石墨烯物性研究迅速成为过去两年凝聚态物理研究的最大热点。 近期,何林课题组发展了一套方法,能够可控地制备利于扫描隧道显微镜系统(STM)研究的双层转角石墨烯,并利用STM研究了小角度双层石墨烯的性质,深入探索该体系由于电子-电子相互作用导致的平带简并度解除和新奇强关联量子物态的关联。例如,何林课题组与合作者发现当小转角体系的平带被部分填充时,电子-电子相互作用会解除平带的谷赝自旋简并度,在体系中产生很大的轨道磁矩(每个莫尔约10μ_B),由于轨道磁矩和磁场的耦合,谷极化态的劈裂能量会随着外加磁场线性增大[6]。同样的结果也在应变引起的平带中观察到了,当双层石墨烯的转角接近魔角时,体系中微小的应变结构可以使两个范霍夫峰之间出现一个新的零能量平带(赝朗道能级),何林课题组与合作者发现电子-电子相互作用会解除赝朗道能级的谷赝自旋简并度,产生轨道磁性态[7]。这些结果表明小转角石墨烯体系是研究二维轨道磁性态和量子反常霍尔效应的理想平台。在角度大于魔角的小转角双层石墨烯中,何林课题组与合作者证明电子-电子相互作用依然会起重要作用,并有可能产生完全不同于魔角双层石墨烯的新奇强关联量子物态。例如在1.49度的样品中,他们证明电子-电子相互作用解除了体系平带中的自旋和谷赝自旋的简并度,产生了一种全新的自旋和谷极化的金属态[8],这一结果进一步拓宽了转角体系新奇强关联量子物态的研究范围。 除了电学性质受层间转角的调制,在双层转角石墨烯体系,由于层间堆垛能与层内晶格畸变引起的应变能的竞争,其原子结构也会随着角度发生改变。最近,何林课题组系统研究了双层转角石墨烯结构随着角度的演化,发现当转角大于魔角时,体系可以看作两个独立的刚性石墨烯层发生扭转,层内晶格畸变几乎可以忽略(定义为非重构结构);当转角小于魔角时,由于莫尔条纹周期较大,层间堆垛能占主导,从而引起晶格畸变产生堆垛的畴界(domain wall)网格(定义为重构结构)。这种畴界的两边都是Bernal堆垛的双层石墨烯(分别为AB堆垛和BA堆垛),能传输谷极化的电流(图一)。我们利用STM证明非重构和重构的两种结构在魔角附近都能稳定存在。进一步,我们发现利用STM针尖脉冲可对魔角双层石墨烯的非重构和重构结构进行切换,从而开关其二维导电拓扑网格。同时,我们发现在强关联效应中起到重要作用的魔角双层石墨烯平带的带宽也能在这一过程中被调控[9]。相关成果近日刊发在物理学期刊《Physical Review Letters》上。何林教授课题组博士生刘亦文为第一作者,美国洛斯阿拉莫斯国家实验室的苏赢博士为文章的共同第一作者,何林教授为通讯作者。
北京师范大学 2021-04-10
铁电量子隧道结亚纳秒超快忆阻器的研究
中国科学技术大学李晓光团队在前期研究基础上,基于铁电隧道结量子隧穿效应,实现了具有亚纳秒信息写入速度的超快原型存储器,并可用于构建存算一体人工神经网络,该成果在线发表《自然通讯》杂志上。研究人员制备了高质量Ag/BaTiO3/Nb:SrTiO3铁电隧道结,其中铁电势垒层厚为6个单胞(约2.4nm)。基于隧道结能带的设计,以及其对阻变速度、开关比、操作电压的调控,该原型存储器信息写入速度快至600ps(注:机械硬盘的速度约为1ms, 固态硬盘的约为1-10ms)、开关比达2个数量级,且其600ps的阻变速度在85℃时依然稳定(工业测试标准);写入电流密度4×103A/cm2,比目前其他新型存储器低约3个量级;一个存储单元具有32个非易失阻态;写入的信息预计可在室温稳定保持约100年;可重复擦写次数达108-109次,远超商用闪存寿命(约105次)。即使在极端高温(225℃)环境下仍能进行信息的写入,可实现高温紧急情况备用。
中国科学技术大学 2021-04-10
针对受时间反演对称性保护的量子自旋霍尔的研究
在应变的InAs/GaInSb量子阱中,量子阱中的应力使其能带发生改变,从而使得体态杂化能隙得以增大,这直接导致了边缘态电子费米速度的增加,因而螺旋边缘态中的相互作用效应变弱。实验上测量得到的边缘态电导以及其对外加磁场的响应清楚地表明该系统中的量子自旋霍尔态是一种Z2拓扑绝缘体,其性质受到时间反演对称性的保护。而且,InAs/GaInSb量子阱中螺旋边缘态的相干长度最长可达10微米以上,远大于之前所有有关量子自旋霍尔态研究工作中报道的数值。另外,螺旋边缘态的相干长度还可以被栅极调节,这显示了边缘态电导与边缘态电子费米速度,也即边缘态相互作用强度密切相关。
北京大学 2021-04-11
高亮度钙钛矿量子点发光二极管
作为新型的半导体材料,金属卤化物钙钛矿因其优异的光电特性得到了广泛的关注,并在太阳能电池、发光二极管、激光器、光催化、记忆存储、晶体管等方面得到应用。短短四年内,钙钛矿太阳能电池的转化效率从最初的3.8%提高到22.1%,超越了传统的非晶硅、染料敏化、有机太阳能等薄膜电池十年的研究成果,在2013 年钙钛矿太阳能电池被Science评为十大科学进展之一。 与钙钛矿太阳能电池相比较,发光二极管的研究进展较缓慢。对于钙钛矿发光二极管,目前以薄膜(thin film)报道为主,对于钙钛矿量子点,尤其是有机阳离子(CH3NH3 (MA), CH(NH2)2 (FA))钙钛矿,相关报道较少。 该团队通过溶液合成的方法在室温下得到了有机-无机阳离子钙钛矿量子点材料FA(1−x)CsxPbBr3,通过优化无机阳离子Cs掺杂浓度,得到了性能优异的钙钛矿量子点发光二极管,发光亮度高达55005 cd m−2 ,电流效率10.09 cd A−1。
南方科技大学 2021-04-13
一种低工作温度的量子点白光 LED 及其制备方法
本发明属于量子点 LED 封装领域,具体涉及一种低工作温度的量子点白光 LED,其中,LED 芯片固定设置在基板表面,量子点硅纳米球附着在 LED 芯片表面,透光壳体内表面附着有一层荧光粉胶,该透光壳体直接安装在基板上或通过一模塑料固定在基板上方,并将LED 芯片和量子点硅纳米球密封在内,透光壳体内还填充有封装胶将量子点硅纳米球和荧光粉胶隔离。本发明还公开了一种低工作温度的量子点白光 LED 的制备方法。本发明的量子点 LED 利用封装胶将荧光粉胶和量子点硅纳米球隔离,可降低量子点工作温度,减少重吸收损失,提高白光 LED 的发光效率;还能减少量子点的用量,控制量子点与荧光粉各自的发光光谱,得到所需的理想型发光。
华中科技大学 2021-04-13
多功能量子点-有机叠层发光二极管
提出了一种量子点-有机叠层发光二极管(LED)的新结构,实现了单颗LED发射红、绿、蓝、白及任意色彩的功能,有望取代传统红、绿、蓝LED,提高显示屏的分辨率及开口率。 量
南方科技大学 2021-04-14
首页 上一页 1 2
  • ...
  • 24 25 26
  • ...
  • 35 36 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    63届高博会于5月23日在长春举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1