高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
用于瓦斯气体室温探测的传感材料与器件
本项目将提供一款高品质的非晶 ZnTiSnO 微型半导体气体传感器,为一种具有纳米材料特征的薄膜型气体传感器,用于可燃性气体(特别是乙醇)的检测。该半导体气体传感器具有下述优点:灵敏度高、选择性好、响应快、稳定性好、抗干扰性强、可室温工作、易于微型化、与微电子系统兼容,而且制作工艺简单、组装成本低、价格低廉。 (1)半导体气体传感器件的核心材料为气敏层,即非晶ZnTiSnO 薄膜,该材料质量如何直接决定了器件的性能。通过前期预研究,我们设计并合成了具有表面微纳结构的绒面 a-ZnTiSnO 薄膜,如何进一步优化工艺参数,更加提升 a-ZnTiSnO 薄膜高质量,实现精确可控生长,依然是本项目拟解决的关键技术。 (2)气体传感器的实用性在于器件参数的确立,因而,通过系统研究,建立非晶 ZnTiSnO 气体传感器各气敏性能与气体参数之间的定量关系曲线,特别是室温工作条件下的定量关系,是本项目拟解决的关键技术。 (3)为使气体传感器获得广泛应用,器件良好的稳定性至关重要。通过工艺优化、器件设计和封装保护等措施,实现非晶ZnTiSnO 气体传感器的高稳定性和抗干扰性,使器件具有长的使用寿命,也是本项目拟解决的关键技术。制备出高质量非晶 ZnTiSnO 薄膜,具有均匀且均一的表面微纳结构,绒度大于35%;薄膜与衬底附着力大于 21N。非晶 ZnTiSnO气体传感器性能指标:气敏层尺寸 10~300μm,易于集成化;对可燃性气体有高选择性,其中对乙醇的敏感度最高;室温工作条件下,对 100ppm 乙醇的响应度不低于 30;响应时间小于 1.8s,恢复时间小于 1.5s;稳定性好,有效使用寿命不低于3 年。 理论与实验相结合,揭示出 a-ZnTiSnO 气体传感器室温气敏性能和稳定性机理,建立理论模型,阐明器件的耐候性规律。研制出具有实用价值的高品质 a-ZnTiSnO 半导体气体传感器,建立一套非晶 ZnTiSnO 材料生长和器件制备的完整工艺,关键技术拥有自主知识产权。 应用范围:  纳米氧化铜产品广泛应用于各类抗菌、抗紫外线、空气净化产品中,如抗菌保鲜膜、抗菌塑料、抗菌纤维、抗菌整理液、抗菌陶瓷、抗菌地板、抗菌纺织品、防嗮化妆品、室内甲醛治理等产品中。 纳米CuO应用前景 催化剂:主要用于国防领域,作为复合固体推进剂的重要成分,用来调节推进剂燃耗性能。 传感器:纳米氧化铜对外界环境的温度,光,湿气等十分敏感,并且可以提高传感器的响应速度,灵敏度和选择性。 在超导,陶瓷,电极活性材料等领域作为一种重要的无机材料有广泛的应用。 用作玻璃,瓷器的着色剂,光学玻璃磨光剂,有机合成的催化剂,油类的脱硫剂,氢化剂。 用于制造人造宝石及其它铜氧化物,用于人造丝的制造,以及气体分析和测定有机化合物等。 用于饲料中,提高铜的表观消化率。 用于抗菌剂,纳米氧化铜具有清洁,高效,能耗低,污染小,被广泛用于医药,纺织等领域。 用于粒子助力制冷器节能,提高热传递效率。 降低冷冻机油的粘度。 提高烟气脱硝性能。 应用范围: 橡胶工业中硫化活性剂,石油化工行业催化及添加剂,是汽车轮胎、飞机轮胎、工业电缆行业材料以及氧化锌陶瓷; 涂料油漆、透明橡胶、乳胶和塑料行业用,可增加产品强度和致密性、粘合性、光洁度; 抗菌抑菌和除臭材料、医药卫生用杀菌材料、玻璃陶瓷杀菌自洁材料、医药行业杀菌敷料; 电子工业和仪表工业、制造电器件、无线电、无线荧光灯、图像记录仪、变阻仪、荧光体; 军事工业:红外吸收材料。   五、纳米氧化锌分散液 项目 Item 标准 Standard 氧化锌(W/%) ZnO 4% 外观 Exterior 乳白略显黄色易流动液体 Milky white slightly yellow liquid PH 7.2   分散液氧化锌含量可以根据需要在30%以下定制
浙江大学 2021-05-10
一种基于光纤萨格纳克干涉仪的声波传感测量装置
本发明公开了一种基于光纤萨格纳克干涉仪的声波传感测量装 置,包括单色光源、光纤耦合器、第一单模光纤、少模光纤、第二单 模光纤、长周期光纤光栅、第三单模光纤、光电探测器和示波器;在 光纤耦合器的第三端和第四端之间的第一单模光纤、少模光纤、第二 单模光纤、长周期光纤光栅、第三单模光纤依次连接构成了萨格纳克 闭环结构;长周期光纤光栅与少模光纤在萨格纳克闭环内实现了级联; 当外界声波作用于该装置的长周期光纤光栅时,其曲率受到
华中科技大学 2021-04-14
三维在线检测与测量
(1)开发三维在线检测技术,能对生产产品(型材、铸坯、钢板等)进行轮廓测量、缺陷三维检测,钢板表面平直度测量,钢板镰刀弯,对角线,切斜值进行测量;(2)轮廓动态测量精度 0.04mm-0.3mm;(3)缺陷检出率为 100%,缺陷深度检测精度 0.05mm-0.1mm。
北京科技大学 2021-04-13
高精度测量测试设备与系统
核心技术:高精度基础电量测量-电压、电流、电阻自主可控软硬件设计开发基于统一测发控平台的敏捷设计 技术创新点:温度自补偿技术幅值-频率复合标定策略基于自主学习的低频噪声实时滤除方法 技术特色:测量高精度高,产品稳定性好指标范围宽,完全自主可控隔离性好,具有自主知识产权
北京交通大学 2023-05-08
声波传感器
产品详细介绍
江苏六鑫科教仪器设备有限公司 2021-08-23
可见的振动声波
330mm×230mm×250mm,演示正弦波。
宁波华茂文教股份有限公司 2021-08-23
陶瓷与金属连接技术研究
陶瓷具有强度高、硬度高、密度低及优良的耐磨损及耐腐蚀、抗氧化等优点。是一种在航空、航天、军工、核能、汽车及刀具等领域很有发展前途的轻质结构材料。在工程上采用连接技术制造陶瓷与金属的复合构件既能发挥陶瓷与金属各自的优良性能,又能降低生产成本。为满足高性能武器装备发展的迫切需要,进行了SiC、Al2O3等陶瓷和金属扩散连接及钎焊技术研究。 对SiC陶瓷和金属Cr、V、Ta、Ti、Nb、Ti-Co合金、Ti-Fe合金、Ni-Cr合金及不锈钢的界面
哈尔滨工业大学 2021-04-14
微波超声波能量高效协同技术开发与应用
高效且节能环保的微波、超声波技术近年来备受关注。微波加热具有高选择性、升温速率快、温度分布均匀、易自动控制等优点。鉴于传统工艺条件下许多反应无法进行或效率低下的现状,研发一种微波超声波高效协同技术,将两种能量波无干扰地结合,从而可解决功能材料制备、固体废弃物再利用、食品加工等领域内传统工艺存在的难题。该技术能实现快速、高效、靶向合成指定单一组分及目标混合物,处理过程具有化学选择性高、有效成分损失率低、产物结晶度高等特点,而
南京大学 2021-04-14
超声波生物处理的超声波频率检测方法
一种超声波生物处理运行的执行终端超声波频率检测方法,它是在超声波电源的输出变压器副边,增设绕制电压检测线圈,用以检测电压频率;对谐振电感器增设副边,在该副边绕制电流检测线圈,用以检测电流频率。电压检测线圈的同名端和异名端分别作为电压信号接线端子和电压信号始端接线端子,接入检测信号处理电路。电流检测线圈的同名端和异名端分别作为电流信号接线端子和电流信号始端接线端子,接入检测信号处理电路。经检测信号处理电路产生电流波形上升沿过零脉冲信号,再经处理产生电流周期信号输出,由数字信号处理芯片DSP的数字信号处理功能,计算出超声波频率数据输出,并进行控制处理。
江南大学 2021-04-13
矿山数字化生产管理系统
数字化生产管理系统是数字矿山建设的核心内容。系统综合运用自动控制技术、现代信息技术和先进的管理理念,使数字化生产监控、生产信息管理和决策支持信息综合服务三个方面的应用有机集成,形成了涵盖矿山生产管理各个层面的管控信息化平台,实现了管理与监控信息的集成共享,保证了辅助决策信息的实时、准确。(1) 数字化生产监控平台数字化生产监控平台集数据采集、处理、通信、协调、综合智能判断、图文显示为一体,主机防爆箱 多点三维复合定位结果面向生产现场实现集中管理,分散控制的调度指挥模式。系统集成生产作业现场各专业子系统的信息,实现对现场环境、人员、生产设备状态的监测控制,同时为生产信息管理平台提供信息源。(2) 生产信息管理平台生产信息管理平台通过建立完备的业务协同逻辑,封装了大量的业务流转、数据流动、存储以及信息服务等规则,借助于强大的网络数据库支持和科学系统的数据规划,紧密围绕生产计划目标,以安全生产为主线,集成生产计划、调度、安全、设备、物流等各类相关信息,为各部门的协同工作搭建信息平台,支撑业务信息在各管理部门之间的高效流转,并直接采用实时数据进行统计分析。(3) 决策支持信息综合服务平台辅助决策是建立数字化生产管理系统的主要目的。系统借助科学的决策分析模型与方法,将各种生产信息统一集成到浏览器平台下,实现所有生产信息的实时交互式查询及设备运行状态,作业现场信息、人员下井信息的动态查询,为决策者提供方便快捷的信息服务。项目通过关键技术的集成创新,具有很好的适用性和先进性,投入运行后可显著提高矿山的管理水平,经济效益明显。研究成果经专家鉴定,整体技术达到国际先进水平。
北京科技大学 2021-04-13
首页 上一页 1 2
  • ...
  • 6 7 8
  • ...
  • 456 457 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    64届高博会于2026年5月在南昌举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1