高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
杭州东芝投影机维修/浙江投影仪维修点
产品详细介绍 杭州投影机维修服务站(电话:15958016045)是爱普生(epson)、爱琪(EIKI)、宝施马(Proxima)夏普(SHARP)、索尼(sony)、松下(Panasonic)、NEC、普乐士(plus)、日立(HITACHI)、富可视、巴可(BARCO)、飞利浦(philips)、3M、三洋(SANYO)、ASK(美投神)、东芝(toshiba)、三菱(Mitsubishi)、明基(BENQ)、惠普(hp)等多家投影机厂家售后服务的专业维修站.本站拥有国内知名的投影仪(机)专业维修工程师,并备有先进的投影机检测仪器与维修设备。可以进行投影机光路、触发器、电源、液晶板、主板的芯片级维修,并提供各种投影机灯泡(UHP、UHB、UHE、VIP、NSH)高压板、液晶板、液晶片等多媒体投影(机)全部零配件。我们现在已成为杭州规模最大的投影机维修,出租等投影机/投影仪的售后服务公司。我们为高校与政府机关等单位用户,免费提供投影机现场检测服务,并出具维修报告,由用户自行决定是否维修。
杭州亿成投影设备维修中心 2021-08-23
小转角双层石墨烯体系的结构和新奇量子物态研究进展
层间转角在层状堆垛的二维材料体系中提供了一个全新的自由度来调控其结构与性质。近几年,相关方面的研究引起了广泛的关注。早在2012年,何林课题组就开始关注转角对双层石墨烯结构和电学性质的影响,测量了不同转角双层石墨烯的两个范霍夫峰的峰间距能量与转角大小的关系[1],并预言该体系中的准粒子具有可调控的手征性[2],研究了应变结构在该体系产生的赝磁场和赝朗道能级[3]。2015年,何林团队发现双层转角石墨烯体系费米速度随角度减小而迅速下降,证明在转角为1.1度(第一魔转角)附近时费米速度降为零[4],并于2017年,在转角接近魔转角的双层石墨烯体系观察到强电子-电子相互作用[5]。2018年初MIT的Pablo课题组在魔角双层石墨烯观察到电子-电子相互作用导致的关联绝缘体态和超导态,魔角双层石墨烯物性研究迅速成为过去两年凝聚态物理研究的最大热点。 近期,何林课题组发展了一套方法,能够可控地制备利于扫描隧道显微镜系统(STM)研究的双层转角石墨烯,并利用STM研究了小角度双层石墨烯的性质,深入探索该体系由于电子-电子相互作用导致的平带简并度解除和新奇强关联量子物态的关联。例如,何林课题组与合作者发现当小转角体系的平带被部分填充时,电子-电子相互作用会解除平带的谷赝自旋简并度,在体系中产生很大的轨道磁矩(每个莫尔约10μ_B),由于轨道磁矩和磁场的耦合,谷极化态的劈裂能量会随着外加磁场线性增大[6]。同样的结果也在应变引起的平带中观察到了,当双层石墨烯的转角接近魔角时,体系中微小的应变结构可以使两个范霍夫峰之间出现一个新的零能量平带(赝朗道能级),何林课题组与合作者发现电子-电子相互作用会解除赝朗道能级的谷赝自旋简并度,产生轨道磁性态[7]。这些结果表明小转角石墨烯体系是研究二维轨道磁性态和量子反常霍尔效应的理想平台。在角度大于魔角的小转角双层石墨烯中,何林课题组与合作者证明电子-电子相互作用依然会起重要作用,并有可能产生完全不同于魔角双层石墨烯的新奇强关联量子物态。例如在1.49度的样品中,他们证明电子-电子相互作用解除了体系平带中的自旋和谷赝自旋的简并度,产生了一种全新的自旋和谷极化的金属态[8],这一结果进一步拓宽了转角体系新奇强关联量子物态的研究范围。 除了电学性质受层间转角的调制,在双层转角石墨烯体系,由于层间堆垛能与层内晶格畸变引起的应变能的竞争,其原子结构也会随着角度发生改变。最近,何林课题组系统研究了双层转角石墨烯结构随着角度的演化,发现当转角大于魔角时,体系可以看作两个独立的刚性石墨烯层发生扭转,层内晶格畸变几乎可以忽略(定义为非重构结构);当转角小于魔角时,由于莫尔条纹周期较大,层间堆垛能占主导,从而引起晶格畸变产生堆垛的畴界(domain wall)网格(定义为重构结构)。这种畴界的两边都是Bernal堆垛的双层石墨烯(分别为AB堆垛和BA堆垛),能传输谷极化的电流(图一)。我们利用STM证明非重构和重构的两种结构在魔角附近都能稳定存在。进一步,我们发现利用STM针尖脉冲可对魔角双层石墨烯的非重构和重构结构进行切换,从而开关其二维导电拓扑网格。同时,我们发现在强关联效应中起到重要作用的魔角双层石墨烯平带的带宽也能在这一过程中被调控[9]。相关成果近日刊发在物理学期刊《Physical Review Letters》上。何林教授课题组博士生刘亦文为第一作者,美国洛斯阿拉莫斯国家实验室的苏赢博士为文章的共同第一作者,何林教授为通讯作者。
北京师范大学 2021-02-01
小转角双层石墨烯体系的结构和新奇量子物态研究进展
层间转角在层状堆垛的二维材料体系中提供了一个全新的自由度来调控其结构与性质。近几年,相关方面的研究引起了广泛的关注。早在2012年,何林课题组就开始关注转角对双层石墨烯结构和电学性质的影响,测量了不同转角双层石墨烯的两个范霍夫峰的峰间距能量与转角大小的关系[1],并预言该体系中的准粒子具有可调控的手征性[2],研究了应变结构在该体系产生的赝磁场和赝朗道能级[3]。2015年,何林团队发现双层转角石墨烯体系费米速度随角度减小而迅速下降,证明在转角为1.1度(第一魔转角)附近时费米速度降为零[4],并于2017年,在转角接近魔转角的双层石墨烯体系观察到强电子-电子相互作用[5]。2018年初MIT的Pablo课题组在魔角双层石墨烯观察到电子-电子相互作用导致的关联绝缘体态和超导态,魔角双层石墨烯物性研究迅速成为过去两年凝聚态物理研究的最大热点。 近期,何林课题组发展了一套方法,能够可控地制备利于扫描隧道显微镜系统(STM)研究的双层转角石墨烯,并利用STM研究了小角度双层石墨烯的性质,深入探索该体系由于电子-电子相互作用导致的平带简并度解除和新奇强关联量子物态的关联。例如,何林课题组与合作者发现当小转角体系的平带被部分填充时,电子-电子相互作用会解除平带的谷赝自旋简并度,在体系中产生很大的轨道磁矩(每个莫尔约10μ_B),由于轨道磁矩和磁场的耦合,谷极化态的劈裂能量会随着外加磁场线性增大[6]。同样的结果也在应变引起的平带中观察到了,当双层石墨烯的转角接近魔角时,体系中微小的应变结构可以使两个范霍夫峰之间出现一个新的零能量平带(赝朗道能级),何林课题组与合作者发现电子-电子相互作用会解除赝朗道能级的谷赝自旋简并度,产生轨道磁性态[7]。这些结果表明小转角石墨烯体系是研究二维轨道磁性态和量子反常霍尔效应的理想平台。在角度大于魔角的小转角双层石墨烯中,何林课题组与合作者证明电子-电子相互作用依然会起重要作用,并有可能产生完全不同于魔角双层石墨烯的新奇强关联量子物态。例如在1.49度的样品中,他们证明电子-电子相互作用解除了体系平带中的自旋和谷赝自旋的简并度,产生了一种全新的自旋和谷极化的金属态[8],这一结果进一步拓宽了转角体系新奇强关联量子物态的研究范围。 除了电学性质受层间转角的调制,在双层转角石墨烯体系,由于层间堆垛能与层内晶格畸变引起的应变能的竞争,其原子结构也会随着角度发生改变。最近,何林课题组系统研究了双层转角石墨烯结构随着角度的演化,发现当转角大于魔角时,体系可以看作两个独立的刚性石墨烯层发生扭转,层内晶格畸变几乎可以忽略(定义为非重构结构);当转角小于魔角时,由于莫尔条纹周期较大,层间堆垛能占主导,从而引起晶格畸变产生堆垛的畴界(domain wall)网格(定义为重构结构)。这种畴界的两边都是Bernal堆垛的双层石墨烯(分别为AB堆垛和BA堆垛),能传输谷极化的电流(图一)。我们利用STM证明非重构和重构的两种结构在魔角附近都能稳定存在。进一步,我们发现利用STM针尖脉冲可对魔角双层石墨烯的非重构和重构结构进行切换,从而开关其二维导电拓扑网格。同时,我们发现在强关联效应中起到重要作用的魔角双层石墨烯平带的带宽也能在这一过程中被调控[9]。相关成果近日刊发在物理学期刊《Physical Review Letters》上。何林教授课题组博士生刘亦文为第一作者,美国洛斯阿拉莫斯国家实验室的苏赢博士为文章的共同第一作者,何林教授为通讯作者。
北京师范大学 2021-04-10
铁电量子隧道结亚纳秒超快忆阻器的研究
中国科学技术大学李晓光团队在前期研究基础上,基于铁电隧道结量子隧穿效应,实现了具有亚纳秒信息写入速度的超快原型存储器,并可用于构建存算一体人工神经网络,该成果在线发表《自然通讯》杂志上。研究人员制备了高质量Ag/BaTiO3/Nb:SrTiO3铁电隧道结,其中铁电势垒层厚为6个单胞(约2.4nm)。基于隧道结能带的设计,以及其对阻变速度、开关比、操作电压的调控,该原型存储器信息写入速度快至600ps(注:机械硬盘的速度约为1ms, 固态硬盘的约为1-10ms)、开关比达2个数量级,且其600ps的阻变速度在85℃时依然稳定(工业测试标准);写入电流密度4×103A/cm2,比目前其他新型存储器低约3个量级;一个存储单元具有32个非易失阻态;写入的信息预计可在室温稳定保持约100年;可重复擦写次数达108-109次,远超商用闪存寿命(约105次)。即使在极端高温(225℃)环境下仍能进行信息的写入,可实现高温紧急情况备用。
中国科学技术大学 2021-04-10
针对受时间反演对称性保护的量子自旋霍尔的研究
在应变的InAs/GaInSb量子阱中,量子阱中的应力使其能带发生改变,从而使得体态杂化能隙得以增大,这直接导致了边缘态电子费米速度的增加,因而螺旋边缘态中的相互作用效应变弱。实验上测量得到的边缘态电导以及其对外加磁场的响应清楚地表明该系统中的量子自旋霍尔态是一种Z2拓扑绝缘体,其性质受到时间反演对称性的保护。而且,InAs/GaInSb量子阱中螺旋边缘态的相干长度最长可达10微米以上,远大于之前所有有关量子自旋霍尔态研究工作中报道的数值。另外,螺旋边缘态的相干长度还可以被栅极调节,这显示了边缘态电导与边缘态电子费米速度,也即边缘态相互作用强度密切相关。
北京大学 2021-04-11
中国科大成功融合远距离量子密钥分发和光纤振动传感
中国科学技术大学潘建伟、张强等与济南量子技术研究院王向斌、刘洋等合作,实现了一套融合量子密钥分发和光纤振动传感的实验系统,在完成光纤双场量子密钥分发(TF-QKD)的同时,实现了658公里远距离光纤传感,定位精度达到1公里,大幅突破了传统光纤振动传感技术距离难以超过100公里的限制。
中国科学技术大学 2022-06-02
供应压电陶瓷驱动器/压电陶瓷制动器//长春博盛量子
产品详细介绍    
长春博盛量子科技有限公司 2021-08-23
滤液循环利用一步法生产活性微细/纳米碳酸钙
一、项目简介水资源消耗量大及废液排放引起环境污染是困扰碳酸钙行业的问题之一。滤液循环利用一步法生产活性微细碳酸钙技术可以有效地解决这一难题。该工艺可实现污水零排放,且碳化活化一次完成,省去了传统生产方法的活化工序,设备投资少,操作简单,可用于新建厂或现有轻钙企业的技术改造。二、市场前景我国石灰石资源丰富,碳酸钙产品用途极为广泛:塑料工业是目前碳酸钙用量最大、使用最广、技术最成熟的行业。塑料工业中碳酸钙主要用作填充剂,填充量一般在5%-30%,填入塑料中可增加塑料体积、降低产品成本,提高塑料的尺寸稳定性、硬度和刚性,改善塑料的加工性能、耐热性和散光性能。 造纸行业是碳酸钙最具开发潜力的市场。世界上在纸张中碳酸钙的填充量约为纸张重量的20%-40%。碳酸钙加入纸张涂覆料中可以提高涂覆层的光泽、白度、不透明度、油吸收性、平滑度、抗老化性、耐菌性等。由于纳米碳酸钙添加到纸中具有良好的透气性,是高档制品的理想填料,如女性用卫生巾、婴儿用尿不湿、卷烟用纸等。碳酸钙是橡胶工业中使用最早、用量最大的填充剂,填充量一般在5%-75%。碳酸钙大量填充在橡胶制品中,可以增加制品的体积,节约昂贵的天然橡胶和降低成本。碳酸钙在涂料中的应用研究表明,用纳米碳酸钙填充涂料可以提高涂料的柔韧性、硬度、流变性和光学性能。将其添加到胶乳中,能对涂料形成屏蔽作用,达到抗紫外线和防热老化的作用,增加涂料的隔热性。碳酸钙在油墨中的填充量一般在5-40%。由于纳米碳酸钙在油墨产品中能体现出优异的分散性和透明性、极好的光泽和遮盖力及优异的油墨吸收性和高干燥性,因而被广泛用于高档油墨中作为填料。还可以被用作硅酮胶的增强剂,能极大地提高硅酮剂的拉伸强度、模量性能和硬度。此外,碳酸钙还广泛应用于制药、生物发酵、日用化工等行业,随着碳酸钙制备和表面修饰技术的进一步发展,碳酸钙的使用范围将更加广阔,应用前景将更辉煌。三、规模与投资生产规模根据厂家要求而定。年产1万吨投资100~150万元人民币,自动化程度越高,投资数额越大,且受市场影响价格会有波动。四、生产设备  主要设备包括:石灰窑、化灰机、碳化塔、压滤机、干燥机、包装机等。五、效益分析每1万吨产品年利润150~500万元人民币。受市场影响价格会有波动。六、合作方式  厂方支付技术转让费,我方提供全部设计图纸,并负责开车。项目负责人:胡琳娜 联系电话: 022-60204744,13622124805
河北工业大学 2021-04-13
一种复合型四角蛤蜊有机钙制剂及其制备方法
  【发 明 人】吴皓;王令充;陈士勇;刘睿  【技术领域】  本发明涉及一种钙质,具体涉及一种复合型四角蛤蜊有机钙制剂及其制备方法。  【摘要】本发明公开了一种复合型四角蛤蜊有机钙制剂及其制备方法,该有机钙制剂由90-95份四角蛤蜊有机酸钙、0.l-0.5份维生素B2、0.5-l份维生素D3、1-5份酪蛋白磷酸肽组成。该机酸钙由四角蛤蜊外壳经高温煅烧、粉碎、加盐酸
南京中医药大学 2021-01-12
一种利用放电等离子烧结技术制备铝酸三钙的方法
本发明涉及一种利用放电等离子烧结技术制备铝酸三钙的方法,以分析纯碳酸钙 CaCO3 和分析纯 γ 相氧化铝 γ-Al2O3 为原料,球磨后在真空度为(30-50)Pa、脉冲比(ON/OFF)为(6/1-48/8)和轴向压力为 (1-3)kN 的条件下,控制放电等离子烧结炉的升温速率和降温速率,当样品温度降至(60-90)°C时取出磨 细成尺寸小于 20μm 的颗粒,即得到铝酸三钙。本方法简单方便,合成
武汉大学 2021-04-14
首页 上一页 1 2
  • ...
  • 40 41 42
  • ...
  • 57 58 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    64届高博会于2026年5月在南昌举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1