高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
高密度铁基粉末冶金制品制备关键技术研究
针对我国高品质粉末冶金铁基材料制备技术较薄弱的问题,在高品质铁基粉末和高性能铁基制品制备技术方面取得了突破。以 LAP100.29 水雾化铁粉作为高密度低合金粉末基粉,添加母合金粉末、增塑剂经塑化处理后,再添加专用润滑剂和石墨进行混合。首先将水雾化铁粉及合金粉末进行粒度搭配,提高堆积密度;然后通过粉末结化处理,提高混合粉末的流动性、合金成分均匀性;接着通过粉末塑化处理,改善铁粉颗粒整体塑性,从而获得了具有高压缩性的专用高密度成形粉末(图 7)。合批粉末的松比为 3.2~3.4g/cm3,流动性≤30s/50g,压缩性≥7.6g/cm3,粉末显微组织如图 2 所示。在混粉阶段,设计制作了 5 吨/h 专用连续式混合装置(如图 6 所示),通过软化处理的复合粉末及粘结剂、石墨等的定量供给和高效混合,合批制成高密度专用粉末,从而实现粘结化粉末的连续、稳定的批量化生产。
北京科技大学 2021-02-01
对于铁基超导材料Sr1-xNaxFe2As2超导机制的研究
当今凝聚态物理研究中最重要的问题之一是揭示磁性材料中的高温超导机制。带有自旋的电子常被认为是局域在磁性离子实周围的,而形成电流的电子则被视为在晶格中巡游。但事实上这两者均为同一粒子。因此,这对立的两面如何共同协助超导形成,是一个非常有趣的问题。这种“非常规”的机制与铜基超导体、铁基超导体以及重费米子超导体都密切相关。 在具有多个电子轨道的体系,例如铁基超导材料中,电子自旋和轨道自由度的相互作用使得这个问题更为复杂。李源研究员与合作者之前的研究报道已经揭示了自旋-轨道耦合对材料的磁性性质有非常重要的影响。他们的实验同时还表明铁基超导材料中的磁性具有巡游与局域的双重特性。这并不是一个完全意外的结果,因为已有的一些理论研究也说明铁基超导体可以被所谓“洪德金属”的模型描述。不过自旋-轨道耦合以怎样的方式影响铁基材料中的超导机理,依然是一个未知的问题。Figure 1. (a-c) Imaginary part of dynamic spin susceptibility measured at different temperatures. (d) Imaginary part of dynamic spin susceptibility integrated over 4-8 meV based on the data in (a) and (b). 现在,李源研究组及合作者采用基于飞行时间原理的中子散射谱学技术,发现在一种铁基超导材料中,有一类特定的磁激发对超导的形成至关重要,其作用机理与材料中的自旋-轨道耦合效应密切相关。这项工作于2019年1月4日发表在《物理评论快报》上。 这项研究针对的是近年来发现的空穴掺杂的“122”体系铁基超导材料中新奇四重对称性磁相。在传统的二重对称性磁相中,电子自旋指向在晶体的ab面内,而在这种新发现的磁相中电子的自旋指向沿晶体的c方向。有这种四重对称性磁相的晶体中超导温度也被压制。该项研究旨在探索超导的压制与四方磁相中探测到的谱学特征的联系。基于这一目的,研究组瞄准了Sr1-xNaxFe2As2这一种有鲁棒性的四方磁相,且较易制备大单晶的铁基超导材料。Figure 2. (a-b) Constant-Q cuts measured at (0.5, 0.5, 1) and (0.5, 0.5, 3), with background subtracted. (c-d) Intensity difference between 6 K and 20 K at L = 1 and 3. 实验发现,在材料发生从二重对称性(图1a, T = 80 K)转化为四重对称性(图1b, T = 20 K)的相变后,低能的自旋激发发生了显著的变化。根据中子散射截面与散射几何的关系,在L = 1处测量到的信号中c方向的磁激发有更大的比重,而在L = 3处则可探测到更多的ab面内的磁激发。图1d显示,当温度从80 K降到20 K后,由于自旋的方向发生偏转到了c方向,在低能激发中将难以沿c方向时自旋的长短发生改变,因此低能磁激发中c方向的自旋激发被抑制。实验还发现了重要的一点:超导相(图1c, T = 6 K)的自旋激发相对非超导相的自旋激发有轻微的改变,这说明材料超导与的磁性质相关联。进一步的分析(图2)发现,这种改变主要发生在L = 1的位置,这说明在四重对称性磁相中,尽管c方向的磁激发被抑制,但它们仍然是与超导关系最密切的磁激发。这项结果揭示了在多轨道序洪德金属中实现高温超导的一个“兼容性”要求:局域的磁矩必须能够为巡游电子提供后者在实现超导配对过程中所需的磁激发。由于在四重对称性磁相中,该要求恰好不被满足,所以超导温度被抑制。 量子材料科学中心博士研究生郭见青和岳莉为该项工作的共同第一作者。相关的中子散射实验是由日本的MLF, J-Parc用户实验项目支持完成的。这项工作由量子材料科学中心李源研究组和张焱研究组合作完成。研究课题得到了中国自然科学基金委和科技部项目的资助。References:[1] C. Wang et al., Phys. Rev. X 3, 041036 (2013).[2] M. Ma et al., Phys. Rev. X 7, 021025 (2017).[3] Z.P. Yin et al., Nat. Mater. 10, 932 (2011).[4] J. Guo, L. Yue et al., Phys. Rev. Lett. 122, 017001 (2019).
北京大学 2021-04-11
对于铁基超导材料Sr1-xNaxFe2As2超导机制的研究
在具有多个电子轨道的体系,例如铁基超导材料中,电子自旋和轨道自由度的相互作用使得这个问题更为复杂。李源研究员与合作者之前的研究报道已经揭示了自旋-轨道耦合对材料的磁性性质有非常重要的影响。他们的实验同时还表明铁基超导材料中的磁性具有巡游与局域的双重特性。这并不是一个完全意外的结果,因为已有的一些理论研究也说明铁基超导体可以被所谓“洪德金属”的模型描述。不过自旋-轨道耦合以怎样的方式影响铁基材料中的超导机理,依然是一个未知的问题。Figure 1. (a-c) Imaginary part of dynamic spin susceptibility measured at different temperatures. (d) Imaginary part of dynamic spin susceptibility integrated over 4-8 meV based on the data in (a) and (b). 现在,李源研究组及合作者采用基于飞行时间原理的中子散射谱学技术,发现在一种铁基超导材料中,有一类特定的磁激发对超导的形成至关重要,其作用机理与材料中的自旋-轨道耦合效应密切相关。这项工作于2019年1月4日发表在《物理评论快报》上。 这项研究针对的是近年来发现的空穴掺杂的“122”体系铁基超导材料中新奇四重对称性磁相。在传统的二重对称性磁相中,电子自旋指向在晶体的ab面内,而在这种新发现的磁相中电子的自旋指向沿晶体的c方向。有这种四重对称性磁相的晶体中超导温度也被压制。该项研究旨在探索超导的压制与四方磁相中探测到的谱学特征的联系。基于这一目的,研究组瞄准了Sr1-xNaxFe2As2这一种有鲁棒性的四方磁相,且较易制备大单晶的铁基超导材料。Figure 2. (a-b) Constant-Q cuts measured at (0.5, 0.5, 1) and (0.5, 0.5, 3), with background subtracted. (c-d) Intensity difference between 6 K and 20 K at L = 1 and 3. 实验发现,在材料发生从二重对称性(图1a, T = 80 K)转化为四重对称性(图1b, T = 20 K)的相变后,低能的自旋激发发生了显著的变化。根据中子散射截面与散射几何的关系,在L = 1处测量到的信号中c方向的磁激发有更大的比重,而在L = 3处则可探测到更多的ab面内的磁激发。图1d显示,当温度从80 K降到20 K后,由于自旋的方向发生偏转到了c方向,在低能激发中将难以沿c方向时自旋的长短发生改变,因此低能磁激发中c方向的自旋激发被抑制。实验还发现了重要的一点:超导相(图1c, T = 6 K)的自旋激发相对非超导相的自旋激发有轻微的改变,这说明材料超导与的磁性质相关联。进一步的分析(图2)发现,这种改变主要发生在L = 1的位置,这说明在四重对称性磁相中,尽管c方向的磁激发被抑制,但它们仍然是与超导关系最密切的磁激发。这项结果揭示了在多轨道序洪德金属中实现高温超导的一个“兼容性”要求:局域的磁矩必须能够为巡游电子提供后者在实现超导配对过程中所需的磁激发。由于在四重对称性磁相中,该要求恰好不被满足,所以超导温度被抑制。
北京大学 2021-04-11
两步法退火制备钽钪酸铅基铁电薄膜的方法
一种两步法退火制备钽钪酸铅基铁电薄膜的方法,工艺步骤包括制备过渡层、制备钽钪酸铅基铁电薄膜、钽钪酸铅基铁电薄膜的退火处理;钽钪酸铅基铁电薄膜的退火处理是将钽钪酸铅基铁电薄膜放入退火炉内,在氧气流中以40℃/秒的升温速率升温至800℃~850℃后即刻停止加热,使其随炉冷却至500℃~600℃保温3分钟~5分钟,然后随炉冷却至室温。采用上述方法制备的钽钪酸铅基铁电薄膜钙钛矿相纯度可达100%,结晶性能好,表面均方根粗糙度较低,而且还具有剩余极化强度高和高度择优取向的特点。
四川大学 2021-04-11
高密度铁基粉末冶金制品制备关键技术研究
针对我国高品质粉末冶金铁基材料制备技术较薄弱的问题,在高品质铁基粉末和高性能铁基制品制备技术方面取得了突破。以 LAP100.29 水雾化铁粉作为高密度低合金粉末基粉,添加母合金粉末、增塑剂经塑化处理后,再添加专用润滑剂和石墨进行混合。首先将水雾化铁粉及合金粉末进行粒度搭配,提高堆积密度;然后通过粉末结化处理,提高混合粉末的流动性、合金成分均匀性;接着通过粉末塑化处理,改善铁粉颗粒整体塑性,从而获得了具有高压缩性的专用高密度成形粉末(图 7)。合批粉末的松比为 3.2~3.4g/cm3,流动性≤30s/50g,压缩性≥7.6g/cm3,粉末显微组织如图 2 所示。在混粉阶段,设计制作了 5 吨/h 专用连续式混合装置(如图 6 所示),通过软化处理的复合粉末及粘结剂、石墨等的定量供给和高效混合,合批制成高密度专用粉末,从而实现粘结化粉末的连续、稳定的批量化生产。图 1 连续式混粉装置图 2 水雾化铁粉和预处理后粉末显微组织基于粉体塑性特性和改性原理,通过优化粉体粒度组成、改善粉体塑性变形能力,再结合高密度成形技术制备出高密度铁基制品。首先将水雾化铁粉及合金粉末进行粒度搭配,提高堆积密度;然后通过粉末结化处理,提高混合粉末的流动性、合金成分均匀性;接着通过粉末塑化处理,改善铁粉颗粒整体塑性,从而获得了具有高压缩性的专用高密度成形粉末。在混粉阶段,设计制作了连续式混合装置,通过软化处理的复合粉末及粘结剂、石墨等的定量供给和高效混合,实现粉末的连续、稳定的批量化生产。压制过程中,采用多模板多缸联动和计算机自动精确控制技术,提高压坯密度均匀性; 通过模壁润滑,降低粉末颗粒与模壁之间的外摩擦力,提高了压坯密度及其均匀性。采用高密度成形技术制备出密度为 7.5~7.55g/cm3 的高密度铁基制品,其抗拉强度、延伸率和疲劳强度都比普通铁基材料显著提高,具有综合力学性能优异,尺寸精度高,使用寿命长等优点,如图 8 所示。开发的高密度粉末冶金同步器系列及链轮系列等产品,已经通过了吉利集团、湖州求精、德尔福等公司的供货评审,目前已形成批量供货,项目期内实现产值 860 万元,利税 120 万元,如图 2 所示。建立了年产 5000 吨高密度铁基制品生产线,如图 4 所示。图 3 高密度铁基制品的拉伸曲线和疲劳性能图 4 典型的高密度铁基制品利用 δ 相烧结制备出接近全致密(>99.9%)的铁基软磁零件。利用加 P 液相烧结,大幅度降低了烧结温度,缩短烧结时间。在 1200C 烧结 2 小时,Fe-0.8%P 的相对密度可以达到为 98.5%。制备的铁基软磁材料的烧结致密度≥96%;磁导率(μm)≥6000,饱和磁感应强度≥1.6T,矫顽力≤110A/m。图 9 是烧结温度对高密度样品最大磁导率和矫顽力的影响规律。随着烧结温度的升高,高密度纯铁样品的磁导率提高,同时矫顽力下降;当烧结温度达到 1450°C 时,样品的磁性能有显著提高,如图 10 所示。升高温度可以进一步提高材料的致密度,并促经晶粒的长大完善,进而提高材料的磁性能,如图 11 所示。采用 HIP 和后续热处理工艺,制备出全致密的铁基软磁材料,能够进一步提高材料的磁性能。
北京科技大学 2021-04-13
氢能源车用纳米结构镁基合金复合储氢材料
针对车载氢能源的难题,开展纳米结构镁基合金复合材料储氢研究,特别开展了 Mg 纳米线的储氢性能研究。 MgH2(7.6wt% H2)是理想的轻质储氢材料之一,但其缓慢的吸放氢动力学和相对高的操作温度,限制了它的发展。为了改善镁基材料的储氢性能,通过气相传输的方法制备了不同形貌的 Mg 纳米线。结果表明,改变载气流速、传输温度和沉积基底,可以控制 Mg 纳米 10线的长度和直径。测试结果显示,Mg 纳米线降低了脱附能垒,改善了热力学和动力学性能。实验结果显示,直径为 30-50nm 的 Mg 纳米线具有良好的可逆储放氢性能。 研究成果发表在 J. Am. Chem. Soc.,J. Phys. Chem. C,J. Alloys Compds 等期刊上,授权发明专利 2 项。
南开大学 2021-02-01
氢能源车用纳米结构镁基合金复合储氢材料
针对车载氢能源的难题,开展纳米结构镁基合金复合材料储氢研 究,特别开展了 Mg 纳米线的储氢性能研究。 MgH2(7.6wt% H2)是理想的轻质储氢材料之一,但其缓慢的吸 放氢动力学和相对高的操作温度,限制了它的发展。为了改善镁基材 料的储氢性能,通过气相传输的方法制备了不同形貌的 Mg 纳米线。 结果表明,改变载气流速、传输温度和沉积基底,可以控制 Mg 纳米 线的长度和直径。测试结果显示,Mg 纳米线降低了脱附能垒,改善 了热力学和动力学性能。实验结果显示,直径为 30-50nm 的 Mg 纳米 线具有良好的可逆储放氢性能。研究成果发表在 J. Am. Chem. Soc.,J. Phys. Chem. C,J. Alloys Compds 等期刊上,授权发明专利 2 项。 
南开大学 2021-04-13
氢能源车用纳米结构镁基合金复合储氢材料
针对车载氢能源的难题,开展纳米结构镁基合金复合材料储氢研究,特别开展了Mg纳米线的储氢性能研究。 MgH2(7.6wt% H2)是理想的轻质储氢材料之一,但其缓慢的吸放氢动力学和相对高的操作温度,限制了它的发展。为了改善镁基材料的储氢性能,通过气相传输的方法制备了不同形貌的Mg纳米线。结果表明,改变载气流速、传输温度和沉积基底,可以控制Mg纳米线的长度和直径。测试结果显示,Mg纳米线降低了脱附能垒,改善了热力学和动力学性能。实验结果显示,直
南开大学 2021-04-14
航空用新一代镍基高温合金及其单晶叶片
项目目标产品是航空用新一代镍基高温合金及其单晶叶片,基于国际先进的超纯净熔炼和镍基单晶涡轮叶片制造技术,广泛应用于航空发动机领域。以江苏省优秀科技创新团队为依托,以国际合作为桥梁,以国家急需、国际前沿为宗旨,通过产学研联合,瞄准航空发动机用单晶高温合金涡轮叶片生产的国际先进水平,以国产大飞机项目为导向,实现具有自主知识产权的航空发动机用镍基单晶高温合金涡轮叶片生产共性关键制造技术突破。本项目所开发的航空用新一代单晶叶片具有在高温度下拥有优异综合性能,适合长时间在高温下工作,能够抗腐蚀和磨蚀,长寿命
江苏大学 2021-04-14
航空用新一代镍基高温合金及其单晶叶片
项目简介项目目标产品是航空用新一代镍基高温合金及其单晶叶片,基于国际先进的超纯净熔炼和镍基单晶涡轮叶片制造技术,广泛应用于航空发动机领域。以江苏省优秀科技创新团队为依托,以国际合作为桥梁,以国家急需、国际前沿为宗旨,通过产学研联合,瞄准航空发动机用单晶高温合金涡轮叶片生产的国际先进水平,以国产大飞机项目为导向,实现具有自主知识产权的航空发动机用镍基单晶高温合金涡轮叶片生产共性关键制造技术突破。本项目所开发的航空用新一代单晶叶片具有在高温度下拥有优异综合性能,适合长时间在高温下工作,能够
江苏大学 2021-04-14
首页 上一页 1 2 3 4 5 6
  • ...
  • 97 98 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    63届高博会于5月23日在长春举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1