高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
一种支持非抢占实时任务集的节能调度方法
本发明公开了一种支持非抢占实时任务集节能调度方法,其步 骤包括:初始任务集合处理,获取初始减速因子,获取候选减速因子, 分配减速因子;本发明所公开的非抢占实时任务集节能调度方法,在 保证非抢占实时任务在截止期之前完成的前提下,充分考虑了任务集 的非抢占特性,得到更小的减速因子,从而使得任务集能以更低的速 度运行,达到更好的节能效果,可有效节约嵌入式系统能耗,并具有更 强的非抢占任务集实时节能调度能力;与现有的实时系统
华中科技大学 2021-04-14
非接触电能传输系统电磁机构动态实验演示装置及其方法
一种非接触电能传输系统电磁机构动态实验演示装置及其方法,装置构成是:底座的纵向滑轨与左、右基座底部的滑槽配合;底座左、右两端分别通过轴承连接左、右纵向调节丝杆,两丝杆分别与左、右基座上的螺母连接;左、右基座顶部横向的滑轨分别与左、右横向滑块底部的滑槽配合,左、右横向滑块的相对面分别螺纹连接发射线圈承载板与接收线圈承载板;左、右基座前端分别通过轴承连接左、右横向调节丝杆,两横向调节丝杆分别与左、右横向滑块上的螺母连接;能量输入端和输出端均与功率测试及处理显示设备相连。该装置能够测试出发射线圈和接收线圈之间相对距离与系统传输效率的数量关系,为非接触电能传输系统的设计、制造与使用、维护提供实验依据。
西南交通大学 2016-10-25
用非平衡等离子体处理颗粒和气体物质的装置
本发明公开了一种用非平衡等离子体处理颗粒和气体物质的装 置,包括前级充电器和等离子体发生器;前级充电器包括直流电源和 谐振充电电路,直流电源用于为谐振充电电路提供直流电压,谐振充 电电路用于为等离子体发生器提供交流脉冲电压;等离子体发生器为 中心设置有反应腔的圆柱状结构,包括外屏蔽层、原方低压绕组、外 绝缘层、副方高压绕组、内绝缘层、内屏蔽层、副方电容、触发极电 阻、气体间隙陡化开关、电极支架、高压电极、直线电极和金属板; 颗粒或气体物质的处理直接在反应腔内进行。该装置放电可以在大气 压开放空气以及
华中科技大学 2021-04-14
基于动车组的接触网参数非接触测试系统研究
本成果来自有重大应用前景的横向项目,现已结题,知识产权归属西南交通大学。成果的创新性和先进性:针对目前接触网几何参数检测中存在的问题与不足,提出了利用动车组作为检测载体,基于二维激光雷达技术,对视距内障碍物所产生的轮廓曲线进行目标识别、运动跟踪,以达到在线测量接触网几何参数。主要技术指标为导高、拉出值、双支接触线间距与高差、侧面限界等。
西南交通大学 2016-06-27
一种非均相催化芳胺乙酰化反应的方法
(专利号:ZL 201410545694.7) 简介:本发明公开了一种非均相催化芳胺乙酰化反应的方法,属于化学材料及其制备技术领域。该乙酰化反应中芳胺与乙酸酐的摩尔比为1:1.5~3,非均相催化剂的摩尔量是所用芳胺的3~5%,室温下反应18~70min,反应压力为一个大气压,反应后抽滤,滤渣用乙醇洗涤,收集的滤液通过高效液相色谱分析芳胺的转化率以及产物N-乙酰芳胺的选择性和产率。本发明与其它催化剂催化芳胺乙酰化反应的方法相比,具有反应选择
安徽工业大学 2021-01-12
基于单边虚拟电感的电容耦合式非接触电导测量装置
本实用新型公开了一种基于单边虚拟电感的电容耦合式非接触电导测量装置,由交流激励源、激励电极、绝缘测量管道、检测电极、单边虚拟电感、电流电压转换电路、信号处理模块依次相连。单边虚拟电感输出端通过电流电压转换电路中的运放虚地。本实用新型利用单边虚拟电感代替实际电感,利用串联谐振原理,用单边虚拟电感的感抗消除传感器中耦合电容的容抗对测量的不利影响。相较浮置虚拟电感,单边虚拟电感虚地,结构紧凑,稳定性高;相较实际电感,单边虚拟电感体积小易集成,电感值可调,降低了对激励源的要求。本实用新型通过测量检测通路的输出电流,经计算得到待测流体等效电导值,为实现非接触测量绝缘管道内部导电流体的电导提供了一种有效方法。
浙江大学 2021-04-13
SCIENTZ08-IIIC非接触式超声波细胞粉碎机
产品说明 非接触式超声波粉碎机也叫杯式超声破碎仪,可在密闭容器、无菌、可超微量条件下进行破碎。相比传统的探头超声波细胞粉碎机,该仪器具有一次可同时检测多个样品、实验效率高、无需频繁操作探头、避免样本交叉污染等优势。仪器标配低温恒温装置(可根据客户需要选择不同型号),便于样品在4-10℃环境内工作,使能量分布均匀,超声作用 完全。逐渐成为ChIP(染色质免疫共沉淀)和DNA剪切研究平台不可缺少的标准化工具。
宁波新芝生物科技股份有限公司 2021-12-08
高透光型陶瓷基隔热玻璃涂层及玻璃贴膜
1、 一种具有高度可见光透过率与隔热特性的陶瓷基玻璃涂层或玻璃贴膜。 玻璃改造后可见光透过率高于 70%,屏蔽 99%以上的致癌性紫外线,且有 效阻止通过玻璃的热能交换过程,可用于建筑或汽车玻璃的节能改造, 提升建筑的适居度与节能效果。 2、 该项目各技术环节环保无毒,产品成本远低于市面现有技术,性能优于 现有技术,设备投入与实施成本低。
太原理工大学 2021-05-06
燃烧合成氮化硅基陶瓷的产业化技术
在高技术陶瓷领域,先进陶瓷占有极其重要的地位,在诸多的先进陶瓷中,氮化硅基先进陶瓷以其高强度、高韧性、高的抗热震性、高的化学稳定性在先进陶瓷中占有独特的地位,是公认的未来陶瓷发动机中最重要的侯选材料。并且在国际上氮化硅陶瓷刀具和氮化硅基陶瓷轴承已经形成相当规模的产业。任何一个跨国刀具公司都有氮化硅基陶瓷刀具的系列产品,足见其在机加工行业中具有不可替代的地位。 但是,影响氮化硅陶瓷推广的一个主要因素,是氮化硅粉末价格昂贵,这是由于传统的制取氮化硅粉末的方法耗能高,生产周期长,生产成本高。本项目采用具有自主知识产权的创新的燃烧合成技术,制取氮化硅陶瓷粉末和氮化硅复合粉末,具有耗能低,生产周期短,杂质含量低,生产成本低等特点,具有广泛的应用前景。 燃烧合成(Combustion Synthesis,CS)又名自蔓延高温合成(Self- Propagating High-Temperature Synthesis,SHS),是利用化学反应自身放热合成材料的新技术,基本上(或部分)不需要外部热源,通过设计和控制燃烧波自维持反应的诸多因素获得所需成分和结构的产物。 自1990年以来,本项目负责人等针对燃烧合成氮化硅陶瓷产业化的一系列关键问题,在气-固体系氮化硅基陶瓷的燃烧合成热力学、动力学和形成机制等方面进行了深入研究后得到的创新成果。 采用本项目的技术,可以生产符合制作先进陶瓷要求的从全α-Si3N4相到高β- Si3N4相,及不同配比的氮化硅粉末,还可根据用户要求,用此技术生产α-Sialon,β-Sialon和其它各种氮化硅基的复合粉末。粉末的质量优良而稳定。 应用于航天、航空及机械行业等,用于制作氮化硅陶瓷刀具、氮化硅基陶瓷轴承、耐磨耐腐陶瓷涂料等。
北京科技大学 2021-04-11
燃烧合成氮化铝基先进陶瓷的产业化技术
氮化铝(AlN)陶瓷具备优异的综合性能,是近年来受到广泛关注的新一代先进陶瓷,在多方面都有广泛的应用前景。例如高温结构材料、金属溶液槽和电解槽衬里,熔融盐容器、磁光材料、聚合物添加剂、金属基复合材料增强体、装甲材料等。尤其因其导热性能良好,并且具备低的电导率和介电损耗,使之成为高密度集成电路基板和封装的理想候选材料,同时氮化铝—聚合物复合材料也可用作电子器材的封装材料、粘结剂、散热片等。氮化铝在微电子领域应用的市场潜力极其巨大。氮化铝还是导电烧舟的主要成分之一,导电烧舟大量地用于喷涂电视机的显象管等器件、超级市场许多商品包装用的涂铝薄膜,有着广泛的市场。但是,影响氮化铝基陶瓷的推广的主要因素之一,是采用传统方法合成氮化铝粉末,耗能高,生产周期长,生产成本高。本项目采用具有自主知识产权的创新技术,采用燃烧合成技术制取优质的氮化铝陶瓷粉末,具有耗能低,生产周期短,杂质含量低,生产成本低等特点,具有广泛的推广价值。 燃烧合成(Combustion Synthesis,CS)又名自蔓延高温合成(Self- Propagating High-Temperature Synthesis,SHS),是利用化学反应自身放热合成材料的新技术,基本上(或部分)不需要外部热源,通过设计和控制燃烧波自维持反应的诸多因素获得所需成分和结构的产物。 自1994年以来,本项目负责人等针对燃烧合成氮化铝陶瓷产业化的一系列关键问题,在气-固体系氮化铝基陶瓷的燃烧合成热力学、动力学和形成机制等方面进行了深入研究后得到的创新成果。 本项目来源于国家教委高校博士点专项科研基金项目(1994.3-1997.3)。 本项目以应用基础研究成果“燃烧合成氮化铝基陶瓷的应用基础研究”已于1999年通过专家函审。 采用本项目的技术,可以生产符合制作先进陶瓷要求的氮化铝粉末,还可根据用户要求,用此技术生产氮化铝基陶瓷粉末。粉末的质量优良而稳定。 氮化铝广泛应用于高温结构材料、金属溶液槽和电解槽衬里、熔融盐容器、磁光材料、聚合物添加剂、金属基复合材料增强体、装甲材料、高密度集成电路基板、电子器材的封装材料、粘结剂、散热片、导电烧舟等。
北京科技大学 2021-04-11
首页 上一页 1 2
  • ...
  • 73 74 75
  • ...
  • 122 123 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    64届高博会于2026年5月在南昌举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1