高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
ND-A型动力粘度标准装置恒温槽
产品详细介绍主要用途及特征动力粘度标准装置恒温槽具有稳定性好,温场均匀、控制精度高等特点,专为动力粘度测量而研制,也适用于各计量、生化、石油、能源、环保、医药等部门及生产温度计、温控器等厂家进行物理参数的检测,亦可为其他研究工作提供恒温源。主要技术指标温度范围:(0~50)℃温度波动度:±0.01℃温度均匀度:≤0.01℃工作区尺寸:30×40×60cm工作介质:水使用环境温度:低于30℃外形尺寸:56×65×130cm总功率:4kV电源:220V/50Hz 公司相关产品酸度计检定装置电导率仪检定装置分光光度计检定装置酶标分析仪检定装置气相色谱仪检定装置气相色谱质谱联用仪检定装置液相色谱仪检定装置离子色谱仪检定装置原子吸收检定装置红外光谱仪检定装置粘度计检定装置(可自动检定)密度计检定装置(可自动检定)酒精计检定装置玻璃量器检定装置(可自动检定)烘箱/培养箱检定装置碳硫分析仪检定装置生化分析仪检定装置报警器探头检定装置旋光仪检定装置白度计检定装置阿贝折射仪检定装置离子计检定装置罗维鹏比色计检定装置电位滴定仪检定装置有机元素分析仪检定装置温度计自动检定系统检定装置
深圳市世纪经典检测仪器有限公司 2021-08-23
SC-2015温度计检定恒温槽
仪器概述   温度计检定恒温槽此标准恒温槽多供计量部门作一、二等标准水银温度计,贝克曼温度计,工业铂热电阻,标准铜-康铜热电偶检定之用,也可作高精度热、冷源供生产、科研使用。 技术参数 1、工作电源:AC220V  50Hz 2、温度均匀:0.005~0.01°C 3、温度波动度:0.005~0.01°C/30min 4、控温范围:-30 ~+100°C(可选-80~+100°C,90~+200°C) 5、数显分辨:0.001°C 6、工作槽容量:23L  7、工作槽开孔:150mm*480mm 8、温度修正分辨率:高达0.001℃ 性能特点 1、专用软件研发自制的温度控制技术,配有 PT100以及全进口的电子原件等组成。 2、方便修正显示温度与实际温度的误差,温度修正分辨率高达0.001℃,使显示的温度值准确无误。 3、具有 温保护、 温鸣叫报警、可设定 温报警温度, 温时可自动切断负载。 4、智能软件温度稳定性强,PID可自动根据不同的介质自动整定最佳参数。 5、使用软件数字锁定控制系统各项设定值,避免无关人员进行操作,保证实验过程数据正确无误。 6、准确的温度控制,使工作槽内温度快速稳定。 7、按“电源”键可关掉仪器所有功能。 8、全封闭压缩机制冷,降温速度快,具有过热过电流多重保护。 网址链接 http://www.csscyq.com/proshow.asp?id=844  
长沙思辰仪器科技有限公司 2021-12-23
一种用于汽车热镀锌板表面阴极电泳前处理液
(专利号:ZL 201310364134.7) 简介:本发明公开一种用于汽车热镀锌板表面阴极电泳前处理液,属于热镀锌板表面处理技术领域。本发明处理液的组成及其质量百分含量是:有机硅烷:10~20%,磷化组分:5~10%,其余为去离子水;其中磷化组分的组成及其每升含量是:硝酸锰0.8~1g/L,氧化锌0.8~1.2g/L,磷酸5~15g/L,硝酸镍0.8~1g/L,磷酸亚铁0.8~1.5g/L;有机硅烷为3-(2,3-环氧丙氧)丙基三甲氧基
安徽工业大学 2021-01-12
一种阴极保护用石墨复合接地材料及其制备方法
本发明公开了一种阴极保护用石墨复合接地材料及其制备方法,包括内芯和采用复合石墨线绕内芯 编织获得的复合石墨编织外层,复合石墨线由复合石墨带捻制获得,其中:内芯由锌芯石墨线和铜芯石 墨线构成,锌芯石墨线包括锌纤维芯和第一复合石墨外层,第一复合石墨外层采用复合石墨带绕锌纤维 芯捻制获得;铜芯石墨线包括铜纤维芯和第二复合石墨外层,第二复合石墨外层采用复合石墨带绕铜纤 维芯捻制获得;复合石墨带包括两层蠕虫石墨层和铺设于两层石墨层间的无机纤维,无机纤维外
武汉大学 2021-04-14
阴极离子镀超硬涂层在硬质合金刀具上应用
本项目系统地研究了阴极离子镀第一代涂层(TiN,TiC和CrN)、第二代涂层(TiCN和TiAlN)、第三代涂层(TiN/TiCN)、第四代涂层(金刚石和DLC)、第五代涂层(TiAlSiN)和第六代涂层(AlCrN)的制备方法及其摩擦-磨损性能,适应了数字化制造时代的需求,满足了干切削的要求,具有高热稳定性、高抗氧化性和良好的红硬性的优点。本项目制备的高性能涂层,如TiAlN、AlCrN和TiAlSiN等在国内有巨大的应用市场,目前国内的刀具和模具的涂层市场超过200亿元。与国外同类涂层相比,性
常州大学 2021-04-14
含阴极射线管CRT类显示器拆解生产线
含阴极射线管(CRT)类显示器是目前电视机、电脑产品的主流使用和淘汰部件,由于CRT中含有铅、镉、塑料(生产和焚烧时会产生二恶因和呋喃)、汞、六价铬、钡、铍、荧光屏、溴化阻燃剂等有毒物质,如处理不当,将危害人体健康,并对环境造成严重污染。同时,由于CRT占到整机重量的55%至65%,因此如何有效解决显示器的主要组成部分——屏锥分离及回收技术是完善电视机电脑回收处理过程的关键问题。本项目在拆解试验和电子废弃物材料级分类识别基础上,研制开发了含CRT类显示器回收处理生产线,提出了一套科学合理的含CRT类显示器无污染回收处理工艺路线,且该工艺在工厂实际中得到印证,实现了对已有设备的直接优化集成,成本低,见效快。
北京航空航天大学 2021-04-13
全固态电池正极/电解质界面研究
硫化物固态电解质(LGPS)由于拥有与液态电解质接近的室温离子电导率,因此被视为下一代高能量密度电池的候选体系之一。但是,由于硫化物固态电解质较窄的电化学窗口(如Li10GeP2S12,1.7~2.1 V vs. Li/Li+),在与较高工作电压的LiCoO2氧化物正极(LCO)匹配时会发生一系列副反应,在界面处堆积低电导的氧化副产物(如Li3PS4, S, GeS2),同时LGPS和LCO电化学势的不匹配还将导致界面处产生空间电荷层(SCL),这些因素都将极大地增加固态电池的界面阻抗,进而使得固态电池的性能迅速衰减。目前,解决氧化物正极-硫化物固态电解质界面不匹配问题的主要途径为在氧化物正极表面包覆一层过渡层,用以缓冲正极和电解质界面的电势不匹配问题。 通过简单易行的固相包覆方法,首先将粒径为10 nm二氧化钛纳米颗粒均匀分散在钴酸锂表面,再通过高温烧结处理在钴酸锂表面形成一层约1.5纳米保护层。对照实验,FIB-TEM原位观察和XPS佐证表明通过高温原位反应钴酸锂表面将形成Li2CoTi3O8尖晶石相(LCTO)。具有稳定三维尖晶石结构的LCTO晶体在钴酸锂工作的电压区间依然能保持结构稳定,与钴酸锂基体之间具备较强的键合,同时具有高的锂离子扩散能力(Li+= 8.22×10-7 cm2 s−1),低电子电导(2.5×10-8 S cm-1)。这些性质将有助于在LCO和LGPS之间形成有效的电压降,保持界面稳定性的同时提供快速的离子迁移通道。理论计算表明,相较于LCO/LGPS界面,通过引入LCTO中间层产生的两个替代界面,即LCTO/LCO和LCTO/LGPS具有更强的热力学稳定性和更强的界面亲和力。
厦门大学 2021-02-01
全固态电池正极/电解质界面研究
项目成果/简介:硫化物固态电解质(LGPS)由于拥有与液态电解质接近的室温离子电导率,因此被视为下一代高能量密度电池的候选体系之一。但是,由于硫化物固态电解质较窄的电化学窗口(如Li10GeP2S12,1.7~2.1 V vs. Li/Li+),在与较高工作电压的LiCoO2氧化物正极(LCO)匹配时会发生一系列副反应,在界面处堆积低电导的氧化副产物(如Li3PS4, S, GeS2),同时LGPS和LCO电化学势的不匹配还将导致界面处产生空间电荷层(SCL),这些因素都将极大地增加固态电池的界面阻抗,进而使得固态电池的性能迅速衰减。目前,解决氧化物正极-硫化物固态电解质界面不匹配问题的主要途径为在氧化物正极表面包覆一层过渡层,用以缓冲正极和电解质界面的电势不匹配问题。 通过简单易行的固相包覆方法,首先将粒径为10 nm二氧化钛纳米颗粒均匀分散在钴酸锂表面,再通过高温烧结处理在钴酸锂表面形成一层约1.5纳米保护层。对照实验,FIB-TEM原位观察和XPS佐证表明通过高温原位反应钴酸锂表面将形成Li2CoTi3O8尖晶石相(LCTO)。具有稳定三维尖晶石结构的LCTO晶体在钴酸锂工作的电压区间依然能保持结构稳定,与钴酸锂基体之间具备较强的键合,同时具有高的锂离子扩散能力(Li+= 8.22×10-7 cm2 s−1),低电子电导(2.5×10-8 S cm-1)。这些性质将有助于在LCO和LGPS之间形成有效的电压降,保持界面稳定性的同时提供快速的离子迁移通道。理论计算表明,相较于LCO/LGPS界面,通过引入LCTO中间层产生的两个替代界面,即LCTO/LCO和LCTO/LGPS具有更强的热力学稳定性和更强的界面亲和力。
厦门大学 2021-04-10
连续铁碳微电解流化床设备
此连续铁碳微电解流化床设备的主要原理是将铁屑和碳粒等填充料,填装在主要包括一筒体的特定装置中,制成所谓的电解床。当污水通过时,铁成为阳极,碳成为阴极,产生各种微电化学反应,从而实现废水处理目的。
南京工业大学 2021-04-14
一种电解水技术及设备
1. 痛点问题 水电解制氢是一种较为方便的制取氢气的方法。在充满电解液的电解槽中通入直流电,水分子在电极上发生电化学反应,分解成氢气和氧气。在目前已有的技术中,由于电化学反应产生一定的热量,会导致电极和电解液温度升高。目前工业上主要通过调节电解液流速进行对流换热,电解槽端板上存在乳突状结构增强扰动,加强传热传质过程,从而使电解槽温度维持在一定范围内。即便如此,电解液出口和入口温度依然存在较大差距,出口的电解液温度需要进一步冷却才能重新被利用。 2. 解决方案 本发明的目的是提供一种电解槽流场板结构,解决了电解槽内部温度不均匀性,提高了能量转换效率。将扁平管状热管嵌入电解槽内部,与电解槽端板结合为一体,解决了电解槽端板温度分布不均、出口易发生电解液沸腾的问题,电解槽运行效率增加,并保证一定的安全性。 合作需求 (1)资源对接:有较小规模电解制氢需求的场景(如发电厂) (2)孵化资源:本技术可实现低能耗电极板结构设计,逐步将扩展到电解水制氢流程设计。目前在加工方面,需寻求可进行热管材料设计并同时掌握精密机械加工的团队。
清华大学 2022-01-04
首页 上一页 1 2
  • ...
  • 8 9 10
  • ...
  • 18 19 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    64届高博会于2026年5月在南昌举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1