高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
聚烯烃发泡材料制备关键技术
目前常用的泡沫材料有聚氨酯、聚苯乙烯和聚乙烯三大类,但发泡聚苯乙烯制品难回收,对周围环境造成“白色污染”,聚氨酯泡沫在发泡过程中存在对人体有害的异氰酸酯残留物且发泡材料无法回收利用。发泡聚丙烯以其优良的耐热性、较高的韧性和抗冲击强度以及可回收利用等优点而倍受人们青睐。但由于聚丙烯熔体强度低,发泡过程难以控制,因此很难制备泡孔均匀、形态可控的发泡聚丙烯产品。目前只有少数国家掌握聚丙烯发泡技术,我国还未实现其产业化。 本项目首次把脉动剪切力场引入到聚丙烯挤出发泡过程中,建立了聚丙烯挤出发泡成型新方法,制备出了泡孔均匀细腻、高闭孔率的发泡聚丙烯。项目技术路线如下:首先利用普通聚丙烯通过交联接枝制备出适合发泡的高熔体强度聚丙烯,其次在脉动剪切力场作用下高熔体强度聚丙烯挤出发泡制备发泡聚丙烯。本项目的技术特点是在普通聚丙烯发泡成型工艺基础上,创新性的附加脉动剪切力场,使发泡过程更易控制,所制备出的发泡聚丙烯产品泡孔更加均匀细密。发泡聚丙烯可用于包装、汽车、建筑保温、体育防护器材等行业。
华东理工大学 2021-02-01
干纤维缠绕复合材料气瓶
内衬层采用高密度聚乙烯吹塑成型、增强层采用干纤维缠绕成型、外防护层采用聚氨酯涂敷固化成型。 采用干纤维缠绕工艺可进行高速缠绕作业,生产效率大幅提高;无需树脂作为基体且不需要固化,降低了生产成本;采用凯夫拉纤维替代玻璃纤维,提高了产品强度及韧性。 产品具有质量轻、抗腐蚀、寿命长、耐冲击等特点,是传统钢质LPG气瓶的全新替代品。
哈尔滨理工大学 2021-05-04
纳米碳材料高效生产技术应用
纳米碳材料在人类的生产生活中正显示出越来越多的重要作用,具有广阔的市场空间。碳纳米材料生产由于成本高及部分技术上的瓶颈制约了大规模生产,市场拓展减缓。四川大学研发团队经过十余年的研究和开发,采取研发创新的高新技术,可高效低成本地生产高附加值碳纳米材料(纳米碳管,纳米碳纤维)。 新技术的指标主要有催化剂性能指标和碳纳米管纯度指标。碳纳米管 CVD 制备过程中催化剂的性能将直接影响所生产的碳纳米管的性能。碳纳米管的技术指标主要有反应温度、制备 CNTs 单位质量产量、及原料固碳率等。本技术中催化剂反应温度低于800 ℃, 催化剂的产碳能力可达CNTs 60 - 120 kg/kg cat, 原料单程固碳率为 15%-50%;纳米碳材料纯度高,在85%-98%。碳纳米管的纯度高,制备的碳纳米管纯度超过85%;有的达到 98%。此技术路线可行,实验室小试阶段已完成。 碳纳米管、碳纤维是近十年飞速发展的新型纳米材料,具有很大的商业价值和用途,附加值高。碳纳米管可以作为模具制备出最细的纳米尺度的导线,或者全新的一维材料,在未来的分子电子学器件或纳米电子学器件中得到应用。制备的微型导线可以置于硅芯片上,用来生产更加复杂的电路。利用碳纳米管的性质可以制作出很多性能优异的复合材料。例如用碳纳米管材料增强的塑料力学性能优良、导电性好、耐腐蚀、屏蔽无线电波。使用水泥做基体的碳纳米管复合材料耐冲击性好、防静电、耐磨损、稳定性高,不易对环境造成影响。碳纳米管增强陶瓷复合材料强度高,抗冲击性能好。碳纳米管和金属形成金属基复合材料;这样的材料强度高、模量高、耐高温、热膨胀系数小、抵抗热变性能强。
四川大学 2021-05-11
除湿材料技术及其太阳能再生
成果内容: 本成果取得3项发明专利。除湿材料技术于2019年2月在海南省万宁市进行了性能测试。试验结果表明:在阳光充足的情况下,除湿和再生的转化率可以达到98%左右,能够满足除湿材料再生的要求。 成果优势:该技术可用于潮湿环境下电力电气设施、工业生产、国防建设、仪器仪表、日常生活等的除湿,有太阳条件下可实现太阳能再生和循环利用等。具有很大的应用前景。 成果成熟度:小试阶段 转化方式:技术入股、合作推广、技术转让 成果知识产权情况 专利号 专利名称 专利状态 ZL201711397996.4 一种连续化学反应法蓄热放热系统 授权 ZL201310274286.8 一种膨胀石墨复合蓄热材料及其制备方法和应用 授权 ZL201310274316.5 膨胀石墨复合蓄热材料及其制备方法和应用 授权 图1 除湿材料的DTA-TG 热分析图 图2除湿材料的吸潮量随时间变化曲线 图3 不同再生温度下除湿材料的再生量随时间变化曲线
西北大学 2021-05-11
多品种小批量新型纳米材料
成果简介:当代化工、制药等领域正在面临深刻变革,新材料的出现,助推了这一趋势。山东大学科研团队长期致力于各种新型纳米材料的研制,获得了多个品类的新型纳米材料。 ① 新型碳纳米材料 以块体富碳材料和小分子有机化合物为原料,利用混酸回流、无溶剂热解等方法,制备了发光纳米碳;以多胺为原料,制备了超高分子量聚合物和碳纳米颗粒;以有机羧酸为原料,制备了生物相容性纳米碳。产品可用于发光二极管、荧光油墨、油田、食品等多个领域。 ② 结构精确的胶体银 以硝酸银和巯基烟酸为原料,碱性条件下制备了具有原子级精准结构的银簇,主体框架为六个银原子形成的八面体,外围被六个巯基烟酸配体保护起来。该纳米材料可溶于水,形成胶体银,具有抗菌等功效。 ③ 强吸附多孔材料 共价有机多孔材料具有比表面积大、稳定性高、可塑性强等优点。把对二氧化碳具有亲和作用的富氮基功能团引入共价有机框架材料,制备了一系列富氮基共价有机多孔材料,可选择性吸附二氧化碳。该方法可替代传统二氧化碳处理方法,即有机胺水溶液吸收法,能够降低能耗,减少环境污染。 ④ 纳米纤维素 利用酸解法,制备了纳米纤维素水分散液,品质高,性能稳定。 成果相关图片:
山东大学 2021-05-11
超轻镁锂合金及其复合材料
镁锂合金及其复合材料具有高的比强度和比刚度、优良的减震性能和电磁屏蔽性能,在航空、航天、武器、单兵装备、3C产品等领域有着广阔的应用前景。 本项目研制了镁锂基合金及其复合材料的设计技术、熔炼技术、成型工艺和表面处理技术,设计开发了具有超轻(密度约为1.5g/cm3)、高强(抗拉强度200-300MPa)、高模量(70-100GPa)、高稳定性的稀土金属间化合物增强Mg-Li基复合材料,建立了镁锂合金及其复合材料全链条中试制备平台,部分产品样品已经在航空航天、单兵装备等领域获得试用。 现已建成材料试制平台包括超细粉体制备中试线→100kg级镁锂合金真空熔炼系统→638T挤压中试线→微弧氧化+电泳中试线→机械加工→产品检测等一套轻合金及其复合材料产品试制所需的专用装备,在镁锂基复合材料制备方面形成了专门的制造技术、检测技术和工艺规范,可以满足小批量镁锂合金及其复合材料制备方面的需求。 镁锂合金及其复合材料是世界上最轻的金属结构材料,具有良好的导热、导电、延展性,在航空航天、国防军工等领域有着广泛的应用。随着当今世界对结构材料轻量化、减重节能、环保以及可持续发展的要求日益提高,镁锂合金在需要轻量化结构材料的交通、电子、医疗产品等领域也展现出广阔的应用前景。
北京航空航天大学 2021-04-10
有机聚合物电致发光材料(PLEDs)
PLEDs光电功能材料具有良好的溶解性、成膜性和热稳定性,高量子效率的荧光特性,良好的半导体性能,即能传导电子或空穴,或两者兼具。本项目系列产品可用于显示器件、太阳能电池、生物传感、压力传感、印刷电路等领域。
东南大学 2021-04-10
NFC射频磁性基板材料与应用
NFC射频磁性基板材料是一种高磁导率低损耗的超薄磁性基板材料,该材料是移动终端集成NFC系统的关键支撑,但材料制备技术长期掌握在国外公司。国家工程中心经过技术攻关研制成功低成本磁性基板材料,打破国外技术垄断。
电子科技大学 2021-04-10
钼酸铜纳米棒复合电子封装材料
简介:本发明公开了一种钼酸铜纳米棒复合电子封装材料,属于结构材料技术领域。本发明钼酸铜纳米棒复合电子封装材料的质量百分比组成如下:钼酸铜纳米棒65‑80%、聚丙乙烯5‑7%、聚苯乙烯5‑7%、烷基聚氧乙烯醚0.05‑0.5%、乙酰丙酮钛3‑8%、聚乙烯蜡3‑7%、水3‑6%,钼酸铜纳米棒的直径为25‑100nm、长度为0.5‑3μm。本发明提供的钼酸铜纳米棒复合电子封装材料具有热膨胀系数低、导热系数高、耐老化及耐腐蚀性能优良、易加工、绝缘性好及制备温度低等特点,在电子封装领域具有良好的应用前景。
安徽工业大学 2021-04-11
一种材料强度分布获取方法
本发明提供了一种材料强度分布获取方法,通过材料的强度试验获得若干个材料强度样本(img file='DDA0001595268000000011.TIF' wi='60' he='59'/)确定基于试验数据的强度随机变量样本:(img file='DDA0001595268000000012.TIF' wi='179' he='128'/)将强度随机变量η采用混沌多项式展开,根据高斯采样计算得到各阶混沌多项式基函数样本(img file='DDA0001595268000000013.TIF' wi='156' he='66'/)采用马尔科夫链?蒙特卡洛算法获得各阶混沌多项式系数γ的后验分布样本(img file='DDA0001595268000000014.TIF' wi='77' he='60'/)根据重构的混沌多项式系数样本(img file='DDA0001595268000000015.TIF' wi='47' he='55'/)和混沌多项式基函数样本(img file='DDA0001595268000000016.TIF' wi='126' he='63'/)确定强度随机变量的后验分布样本:(img file='DDA0001595268000000017.TIF' wi='364' he='120'/)根据强度随机变量的后验分布样本(img file='DDA0001595268000000018.TIF' wi='33' he='53'/)计算强度的后验分布样本:(img file='DDA0001595268000000019.TIF' wi='247' he='62'/)最终采用区间统计的方法获得材料的强度分布。本发明方法仅需完成少量强度试验即可获得材料的强度分布,且不需要假设材料的强度分布类型,节约了大量的试验时间和经费,同时,也避免了因材料强度分布模型的错误选取而引入的误差。
东南大学 2021-04-11
首页 上一页 1 2
  • ...
  • 41 42 43
  • ...
  • 197 198 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    63届高博会于5月23日在长春举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1