高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
揭示中国两类暴雨的成因机制
对华中夜间暴雨的研究表明:受大气边界层加热的影响,华南上空的季风气流在白天被抑制,暖湿能量逐渐堆积。季风气流在夜间转为增强,形成低空急流影响长江流域。季风气流的夜间加速可显著加强长江流域的水汽输送辐合、动力抬升和对流不稳定,能量释放可激发中尺度对流系统的夜间发展。因此,伴随季风日变化的暖湿能量“白天蓄能-夜间释放”机制成为中国东部早晨暴雨的重要成因。这种现象可在数天内反复发生,造成严重的洪涝灾害。研究结果还指出,大气环流和日变化现象在暴雨有关的多尺度过程中扮演重要角色。副热带高压等大尺度环流可通过热力和动力机制调节风场日变化,影响夜间中尺度对流系统的发生发展,从而控制暴雨的具体时间和落区。对华南暖区暴雨的研究表明:基于集合预报分析发现,暖区暴雨的可预报性相对锋面暴雨更低。天气尺度低空急流(SLLJ)与锋面暴雨相关,而南海北部的边界层急流(BLJ)与沿海暖区暴雨关系更加密切。从高分辨率数值模拟角度进一步揭示了华南暖区暴雨的对流触发机制,提出了双低空急流的新概念模型。BLJ出口区的低层辐合和SLLJ入口区的中低层辐散出现耦合配置,加强沿海地区的中尺度抬升和水汽辐合,从而激发新的对流系统。双低空急流存在明显的日变化现象,在半夜到凌晨达到最强,造成华南沿海的早晨暴雨。气候统计分析还发现,两类低空急流(BLJ和SLLJ)对华南降水的分布具有显著不同的影响,其影响机理与地形作用、天气尺度扰动和水汽输送过程密切相关。
中山大学 2021-04-13
发现细菌血清抗性机制与调控方法
发现血清抗性菌最重要的代谢特征为甘氨酸-丝氨酸-苏氨酸代谢通路显著下调,采用外源甘氨酸、丝氨酸或苏氨酸重编细菌代谢组,可以大大提高对血清补体的敏感性,同时也可以提高对抗生素的敏感性。其主要机制为外源甘氨酸、丝氨酸和苏氨酸促进三羧酸循环中α-酮戊二酸的积累,以抑制ATP合酶;同时高浓度甘氨酸抑制嘌呤通路合成ATP; 使ATP合成的两条主要途径同时受到抑制,导致ATP生成下降;进而下调cAMP/CRP复合物,上调细菌外膜补体结合蛋白HtrE, NfrA和YhcD表达。高浓度的甘氨酸还可以增加质子动力势,促进血清补体与补体结合蛋白的结合,逆转血清抗性,实现血清补体高效杀菌(如上图所示)。甘氨酸促进补体杀菌在人血清、小鼠血清、猪血清、鱼血浆和对虾血浆均获得相似结果,在BALB/c小鼠和Rag1-/-(无T- 和B- 细胞免疫)细胞缺陷小鼠体内也得到证实,为控制人类和动物养殖病原菌感染提供了新的思路。       该研究不仅在解决百年难题上取得突破性进展,且在机制上有两个新发现:一是发现一条新的能量代谢调节通路,二是发现代谢物可以优于基因调控来主导物质代谢流向。
中山大学 2021-04-13
揭示膀胱癌淋巴转移关键分子机制
阐明LNMAT1通过诱导CCL2募集TAMs促进膀胱癌淋巴转移的关键分子机制,对于在膀胱癌淋巴转移中潜在治疗靶点的临床干预具有重要意义。 鉴定了调控膀胱癌肿瘤微环境相关的长链非编码RNA LNMAT1。LNMAT1能够促进肿瘤细胞分泌趋化因子CCL2,进而募集TAMs到膀胱癌肿瘤微环境中。被“引诱”而来的TAMs能够分泌参与膀胱癌淋巴管生成过程的VEGF-C,帮助肿瘤细胞发生淋巴转移。由此可见,如果能介导到肿瘤微环境这片“土壤”,干预膀胱癌“帮凶”LNMAT1的表达,将能改变“种子”的生存情况,对抑制膀胱癌的进展、改善患者的生存预后发挥重要价值。林天歆教授团队首次阐明LNMAT1介导肿瘤微环境的重要作用及通过与趋化因子CCL2协同调控TAMs的分子机理,对认识膀胱癌淋巴转移的发生发展的机制有重要意义。
中山大学 2021-04-13
效应蛋白的分泌机制和功能的研究
近日,上海交通大学生命科学技术学院、微生物代谢国家重点实验室董涛团队发现细菌Ⅵ型分泌系统(T6SS)可以分泌一种新型的具有分子内伴侣的核酸酶毒素,并揭示了该毒素蛋白的分泌和自剪切机制。相关研究成果以“Intramolecular chaperone-mediated secretion of an Rhs effector toxin by a type VI secretion system”为题发表于Nature Communications杂志上。上海交通大学博士研究生裴同同、李浩和硕士研究生梁小夜为共同第一作者,董涛研究员为通讯作者,该文作者还包括谢志平研究员、于明特别研究员、林双君教授和许平教授等。本文是董涛团队自2019年11月在PNAS和2020年2月在Nature Microbiology上发表的研究结果的延续和扩展,深化了领域对效应蛋白的分泌机制和功能的研究,并为下一步对T6SS进行合成生物学工具化改造和应用有重要的推动作用。微生物广泛存在于自然环境中或寄主体内,相应也进化出了多种与其他物种竞争的策略。Ⅵ型蛋白分泌系统(T6SS)是大多数革兰氏阴性致病菌与环境中其他微生物竞争及感染宿主的重要“武器”。T6SS 能够通过直接接触将具有抗菌活性或细胞毒性的效应蛋白注射到受体细胞内。T6SS效应蛋白往往具有不同的大小、结构和功能特性,因此对其分泌机制的解析一直是领域内的热点和难点。本研究在致病性气单胞菌Aeromonas dhakensis中发现了首个能够自我剪切的T6SS效应蛋白TseI。通过多种生化和遗传突变实验,作者发现TseI表达时能够自剪切为三个片段(N、 Rhs 和 C)。C端是一个核酸酶毒素,而N端和 Rhs在剪切后能够作为伴侣蛋白与C端毒素非共价结合。在N端和Rhs的辅助作用下,C端毒素能够通过T6SS分泌到受体细菌内至其死亡。此外,该研究还在包括铜绿假单胞菌、丁香假单胞菌和副溶血弧菌等多种病原微生物中发现了具有类似特性的T6SS效应蛋白。因此,作者将TseI及其同源蛋白定义为一类新型的含分子内伴侣的自剪切效应蛋白。T6SS效应蛋白 TseI 的鉴定  A:纯化后的 TseI 显示蛋白剪切为三段;B:TseI同源蛋白的序列对比显示保守氨基酸序列和N/C端自剪切位点;C:TseI同源蛋白在致病菌中的分布;D:分子内伴侣介导的TseI分泌模型。该研究获国家重点研发项目(2018YFA0901200)和国家自然科学基金委(31770082)等项目的支持。论文链接:http://dx.doi.org/10.1038/s41467-020-15774-z
上海交通大学 2021-04-11
干眼的免疫机制研究中取得突破
构建了小鼠和人角膜上皮细胞的干眼模型来模拟干燥和高渗压力诱导的干眼,深入研究干眼的免疫损伤机制和关键致病靶点。国际上首次发现环境压力可以促进角膜上皮细胞中的新型炎性小体——NLRC4和NLRP12炎症小体的组装、活化,从而诱导GSDMD的切割,引起角膜上皮的焦亡打孔、并伴随大量炎症因子(白介素[IL]-1β和IL-33)的释放;并且NLRC4和NLRP12可以相互协同放大焦亡的炎症损伤。研究还首先报道了细胞焦亡的新机制,即焦亡打孔的过程中不仅有经典的IL-1β的分泌还伴有大量IL-33释放,介导角膜上皮细胞的炎症损伤。靶向性调控GSDMD和IL-33的切割、活化可以显著抑制眼表组织损伤,证实了其是介导干眼发病的关键致病靶点。研究不仅揭示了干眼角膜上皮细胞免疫炎症损伤的关键机制,也为干眼的治疗提供了新靶点和治疗策略。
中山大学 2021-04-13
耐药性超级细菌治疗新机制
发现一种已于临床应用多年专门对付幽门螺旋菌治疗胃溃疡、含有金属铋的抗菌药物 (枸橼酸铋钾Colloidal Bismuth Subcitrate CBS),能有效“驯化”抑制一些死亡率极高、具多重耐药性超级细菌的活跃性,并能延缓细菌耐药性的产生,让现有抗生素的使用周期大为延长,可对付包括会引发出血性腹泻、败血症、脑膜炎和多发性脓肿等严重感染的耐碳青酶烯类肠杆菌(CRE)和耐碳青酶烯类肺炎克雷伯杆菌(CRKP)等。 耐碳青酶烯类肠杆菌(CRE)被世界卫生组织评为当今全球最高危的三类超级细菌之一,是一类对几乎全部的抗生素都具有耐药性的超级细菌,经人对人的传染性非常高。据美国CDC的数据,受到CRE感染并发展为血液感染的病人致死率可高达50%。NDM-1(New Delhi Metallo-β-lactamase 1)是一种导致CRE超级细菌形成的重要耐药因子,携带NDM-1的超级细菌感染控制难度大,死亡率高,对公众健康造成极大的威胁,有机会引发抗生素时代的终结从而使人类进入后抗生素时代。科学家已在除南极洲外逾70个国家和地区发现携带NDM-1的致病菌。 该研究团队发现含铋化合物可成为一类对付NDM-1的强力抑制剂。团队通过对港大余雷觉云感染及传染病中心总监何栢良医生在香港采集的NDM-1耐药大肠杆菌(简称NDM-HK)的一系列研究发现,在现有的抗生素疗法中加入含铋的抗菌药,携带NDM-1的超级细菌会逐渐被“驯化”,以常用的碳青霉烯类抗生素便能将这类细菌轻易杀死。 尤为重要的是,利用这种全新的联合疗法能把现有抗生素的用量减少近九成,并在较长时间内遏止NDM-1耐药性的进一步增强,从而使现有抗生素的使用寿命得以大为延长。研究团队在小鼠感染细菌模型中,使用含CBS的联合疗法能显著延长被NDM-1细菌系统性感染小鼠的存活时间,将小鼠的最终成活率提升25个百分点以上。目前研究团队将继续优化 CBS 的应用范围, 正实验超级细菌尿道感染等动物模型,以期更广泛对抗一系列的恶菌感染。
南方科技大学 2021-04-13
发现植物光信号转导新机制
光不仅是植物进行光合作用的能量来源,也是调控植物生长发育的一种重要环境信号分子。植物幼苗的光形态建成是光信号调控植物生长发育的重要过程,该过程受不同光受体、E3泛素化连接酶复合体和转录因子等组成的分子网络体系调控。在植物光信号转导途径中,锌指蛋白BBX(B-box)家族成员发挥了重要作用,多个BBX蛋白参与COP1-HY5介导的信号通路,共同调控植物光形态建成。 光信号可启动植物体内将
南方科技大学 2021-04-14
气溶胶与降水减少相关物理机制
发现由人为活动产生的气溶胶可显著抑制华南四月中尺度对流系统的发生频次,进而显著减少降水,并阐释了其物理机制。此发现解释了近40年来华南四月降水减少的原因。 研究团队首先分
南方科技大学 2021-04-14
瑞德西韦抑制新冠病毒机制
北京协和医院张抒扬团队联合中国科学院上海药物研究所徐华强、许叶春课题组以及浙江大学基础医学院张岩课题组经过46天的日夜奋战,首次解析新冠肺炎病毒重要药靶RNA复制酶和抑制剂瑞德西韦(Remdesivir)的高分辨冷冻电镜结构,阐述RNA复制酶结合RNA的模式,以及瑞德西韦抑制RNA延伸的机制,为基于病毒基因的复制酶的抗新冠病毒药物以及广谱抗病毒药物研发提供了理论机制和结构基础。相关论文在线发表在《科学》上。危重型新冠病毒感染常常造成患者多器官功能障碍,包括急性呼吸窘迫综合征、急性心肌损伤、急性肾损伤、弥散性血管内凝血等,治疗难度极大。尽管多学科联合治疗取得了一定成效,但极危重症新冠肺炎患者病死率仍然很高。面对尚无特效药物治疗的困境,迫切需要了解抗病毒药物如瑞德西韦对新冠肺炎感染患者的疗效以及潜在的作用机制。鉴于此,该团队通过研究发现,新冠肺炎病毒主要通过黏膜系统侵染人体细胞,感染后病毒的大量复制需要其遗传物质RNA的迅速合成。而该过程的核心元件RNA复制酶,这是冠状病毒复制的核心组成部分。目前正在进行临床试验的多个核苷类药物,包括瑞德西韦,就是靶向RNA复制酶。面对瑞德西韦的疗效,国内外临床试验报道结果尚不一致。张抒扬团队设计出了新冠病毒聚合酶潜在的RNA结合序列,并首次利用体外生化实验,建立了新冠病毒复制酶活性的测定方法,通过药物抑制试验揭示了瑞德西韦三磷酸形式是最终发挥活性的小分子形式,瑞德西韦三磷酸分子在体外生化数据中对Rdrp存在抑制作用,为临床实验提供了理论依据。为了更进一步阐述瑞德西韦等核苷类药物抗病毒的精细机制,该研究团队还成功解析新冠肺炎病毒RNA复制酶2.8 ?分辨率的单独结构以及结合RNA和抑制剂瑞德西韦分辨率为2.5埃复合物的冷冻电镜结构。此外,该研究还阐述了瑞德西韦如何进入病毒复制活性中心并共价插入病毒基因组,从而抑制病毒复制,从结构上解释了瑞德西韦的抗病毒机制,为当前其他在研的潜在抗病毒药物研发提供结构依据。不过,研究者也表示,在瑞德西韦的临床疗效评价方面,仍然需要继续开展设计严谨的临床试验才能给出最终答案。相关论文信息:https://doi.org/10.1126/science.abc1560
浙江大学 2021-04-11
揭示植物光形态建成调控新机制
通过遗传分析方法发现,在光照条件下,bbx30和bbx31突变体下胚轴长度与野生型相比明显变短,而BBX30和BBX31的过表达材料下胚轴长度与野生型相比显著伸长,这一现象表明了BBX30和BBX31是植物光形态建成的负调控因子。该项研究证明BBX30和BBX31是一个位于HY5信号通路下游的关键因子,参与调控植物光形态建成。
南方科技大学 2021-04-13
首页 上一页 1 2
  • ...
  • 6 7 8
  • ...
  • 31 32 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    63届高博会于5月23日在长春举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1