高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
一种微细凹凸结构的电解加工方法
(专利号:ZL 201410383939.0) 简介:本发明提供了一种微细凹凸结构的电解加工方法,属于电解加工领域。该方法利用一个带有贯穿孔和盲孔结构,且由金属层A、绝缘层和金属层B组成的模板;将工件阳极与金属层A分别与电解电源Ⅱ正、负极相连接,将工件阳极与金属层B分别与电解电源Ⅰ正、负极相连接;金属层B与工件阳极相隔一定距离,并经模板上的贯穿孔喷射电解液;接通上述两电解电源,模板向工件阳极适量进给,进行电解加工,在工件表面可得到微细凹凸
安徽工业大学 2021-01-12
燕麦大宗产品加工技术研发及装备创制
(1)提出了"裸燕麦双涡流研碾分层破壁"生产燕麦胚芽米策略,创制了横型双涡流裸燕麦研碾装备,实现了裸燕麦分层破壁、精准剥皮、保留胚芽等功能,实现了燕麦胚芽米好米率 90%,脱皮率 90%的目标 (2)以燕麦麸为原料,提出了"超声辅助亚临界流体萃取燕麦油技术",并创制了智能化热泵型超声辅助亚临界流体萃取装备,实现了大规模、高效、节能、经济的燕麦原油生产过程,且燕麦原油品质好,燕麦粕利于进一步开发高附加值产品
上海理工大学 2021-01-12
仙草胶提取及其制品加工关键技术研发
发榜企业:河源市吉龙翔生物科技有限公司 悬赏金额:15万元 需求领域:轻工和化工生物技术、植物产品加工 技术关键词:仙草、凝胶、提取、加工技术 产业集群:现代农业与食品产业集群
河源市吉龙翔生物科技有限公司 2021-11-02
一种牛蒡发酵茶的加工方法
普通牛蒡茶一般都是在切片以后采用室外晾晒,使其自然晒干然后再加工, 虽然节省了成本,但是存在质量隐患与风味不好的状况,普通晾干的牛蒡茶往往 容易卫生指标不合格并且口感发涩,淡而无味,无法满足消费者的需求。同时我们发现市场上这一类牛蒡产品处于空白状态。如果能够对普通牛蒡片进行发酵处理,改进生产工艺,可以缩短发酵周期,提高生产效率,稳定生产质量,使其具备普通牛蒡茶没有的风味与口感,并且增加一些功能性成分满足消费者的需求,对于牛蒡资源的深度开发提供一种新思路,推动牛蒡这一种健康食物的发展产生积极的作用。本发明的方法利用发酵的方式使其具有一般牛蒡茶不具有的风味,同时去除了生牛蒡片的腥味,牛蒡中还原糖和总黄酮等活性物质的含量得到了 10%~20% 的提高,使得产品在有营养的同时品质更稳定。同时利用接种发酵与渥堆发酵相结合的方式,缩短了加工时间,降低生产成品,并且规范了生产加工工艺,具有生产规范,操作简单的优点,能够推广至牛蒡茶的规模化及规范化的生产。   
江南大学 2021-04-11
水产食品增值加工过程品质调控关键技术
针对不同国内外需求,依托 7 个纵向课题资助和产学研横向联合研发,开发 了两大类 20 多个高品质水产加工创新产品,较好地解决了传统水产食品加工方法中普遍存在的加工和贮藏过程中品质变劣快、不稳定等难题。申报了 15 项中国发明专利,其中 3 项已授权;申报和授权了 1 项新型实用专利;申报和授权了16 项外观设计专利;在国内外相关重要刊物上发表论文 47 篇,其中 SCI 收录 9 篇;出版了 2 本相关专著;4 个子课题通过了同行专家鉴定或验收。 创新要点 水产品干燥前预处理技术;水产品微波真空干燥技术;水产品微波冷冻干燥新技术。
江南大学 2021-04-11
功能性米线加工及保鲜关键技术
"米线又称米粉、米面条或米粉丝,已成为全球第二大米制品消费产品。随着生活水平的提高和生活节奏的加快,人们对主食的消费需求更加趋向于追求方便、营养和健康,同时适用于糖尿病人、肾病患者以及肥胖人群食用的功能性(中低 GI、低蛋白、高纤维等)米线具有广阔的市场前景。针对传统米线行业原料标准缺乏、加工技术落后(粉碎不均一、糊化不充分、老化难控制)、产品品质低(断条率、糊汤率高,质量不稳定等)、保质期短、系列产品匮乏等突出问题,通过原料标准化、精准配米、回生调控、栅栏保鲜等关键技术突破,成功开发了品质优良、方便营养的速食米线、适用于糖尿病人、肾病患者以及肥胖人群食用的系列功能性(中低 GI、低蛋白、高纤维等)米线产品。该项目对于推进我国米线行业的转型升级具有重要意义。 技术/产品创新性: (1) 基于米线原料指标体系的构建,通过精准配米技术,实现米线原料的标准化。 (2)革新了传统米线生产加工关键技术,开发的半干法柔性粉碎-回流增压自熟-回生精准调控技术,显著提升了米线产品的品质; (3开发了物理-化学栅栏保鲜关键技术可有效抑制鲜湿米粉的微生物增殖、水分流失,具有良好的保鲜效果,货架期在 6 个月内以上,成本低,绿色安全。 (4) 通过植源性活性成分适度调控内源性消化酶,控制淀粉的消化速率,结合功能性多糖,调控葡萄糖释放速率,使得米线可以在肠道内缓慢消化,保证血糖平稳,避免血糖骤升,适合糖尿病及控制体重人群食用。 
江南大学 2021-04-13
牙科小型五轴加工中心专用雅歌电主轴
产品详细介绍Jager高速电主轴:Alfred Jager公司提供丰富的电主轴产品线,完整的精密切削解决方案。Jager高效电主轴具有决定意义的优势在于强有力的技术:精密陶瓷球混合轴承(标准)/免润滑轴承/主轴长度总体偏短/高刚性原于特殊的轴承布局/高的运行精度/通过气封避免内部被污染/静音运转、低震动原于好的电气设计/电机自行设计/三相感应异步电机耐用免维护德国雅歌产品包括手动、有气缸设计和刀柄安装的电主轴。另外Jager公司提供诸如驱动器、冷却机等附件用于电主轴运转。Jager高速电主轴直径从33毫米到150毫米,应用多样化的夹紧系统,也提供客制化的法兰。电主轴功率从80瓦到67千瓦。更大功率的电主轴可以根据需求制作。
东莞市烨宇机械自动化有限公司 2021-08-23
高性能多功能聚四氟乙烯微孔材料的绿色制造
具有微纳多孔结构的聚四氟乙烯(PTFE)微孔材料在高效过滤、防水透声、高端织物、医疗器械等国民经济战略新兴产业的关键材料。但是,由于PTFE材料极难加工,近五十年来,只有美国Gore公司开发的拉伸法实现了PTFE微孔产品的大规模商品化生产,产值高达百亿。但是,拉伸法存在的一些顽固问题仍然没有得到解决,如产品均匀性、产品孔径与孔隙率的。本成果颠覆传统拉伸法,创造性地提出了基于剪切诱导原位成纤工艺,巧妙地解决了存在半个多世纪的问题,可制备具有高孔隙率、小孔径、高强度的高性能PTFE微孔材料,并且可根据生产需求灵活调整产品宏观性状与微观结构,仅通过简单的工艺参数调整,即可实现具有不同微观结构的平板膜、纤维、中空纤维膜、微孔泡沫等批量化生产。与拉伸法相比,本成果工艺灵活、设备简单、能耗显著降低、无环境污染,具有良好的产业化潜力。此外,本成果提供了一种具有普适性的PTFE微孔材料改性方法,可以通过先进的复合工艺实现具有高导电、高导热等功能化PTFE材料,有效填补市场空白。围绕本成果,已发表多篇国际论文、申请四项国家发明专利、两项海外专利,在油水/固液分离、先进织物等领域具有良好应用前景,相关产品已成功验证并得到多方行业内专家认可。
山东大学 2025-02-08
金属功能材料
通过对烧结钴铁氧体进行热等静压烧结,得到钴铁氧体陶瓷材料的样品内部孔隙大大减少,致密度大于 99%;平行方向磁致伸缩系数绝对值大于 150ppm;磁致伸缩激励场低于 2000Oe。对钴铁氧体磁致伸缩材料进行热等静压处理促进了其在低场高频磁致伸缩领域的应用。 通过凝胶注模、磁场取向及常压烧结及热处里工艺,得到的钴铁氧体磁致伸缩材料<100>方向取向度大于 40%,致密度大于 99%,垂直取向方向磁致伸缩系数绝对值大于 300ppm,对应的激励场低于 2000Oe。
北京科技大学 2021-02-01
人工电磁材料
人工超材料是指亚波长尺度单元按一定的宏观排列方式形成的人工复合电磁结构。由于其基本单元和排列方式都可任意设计,因此能构造出传统材料与传统技术不能实现的超常规媒质参数,进而对电磁波进行高效灵活调控,实现一系列自然界不存在的新奇物理特性和应用。然而,传统的电磁超材料和超表面都是基于连续变化的媒质参数,很难实时地操控电磁波。 以程强教授为核心团队的课题组在国际上首次提出“数字编码与可编程超材料”,提出用二进制数字编码来表征超材料的思想,通过改变数字编码单元“0”和“1”的空间排布来控制电磁波。这一概念的提出不仅简化了超材料的设计难度和优化流程,构建了超材料由物理空间通往数字空间的桥梁,使人们能够从信息科学的角度来理解和探索超材料。更重要地是,超材料的数字化编码表征方式非常有利于结合一些有源器件(例如二极管和MEMS开关等),在现场可编程门阵列(FPGA)等电路系统的控制下实时地数字化调控电磁波,动态地实现多种完全不同的功能。 在该工作中,作者利用优化算法,设计相应的时空三维编码矩阵,超表面将入射波能量分散到空间任意方向和任意谐波频谱上,这一特性很好地缩减了雷达散射截面(RCS),未来有望应用于新型的计算成像系统。更重要的是,引入时间维度的编码之后,可以扩展传统的空间编码比特数,降低了实现高比特可编程超表面的系统复杂度。例如,一款2比特的可编程超表面,只要设计相应的时空编码矩阵,就可以在中心频率和谐波频率实现等效的360度相位覆盖,这是传统可编程超表面无法实现的,可用于实现波束塑形等一系列实用功能。 本工作得到了国家科技部重点研发计划“变革性技术关键科学问题”重点专项“微波毫米波数字编码和现场可编程超构材料的理论体系与关键技术”,以及国家自然科学基金等项目的资助,相关实验测试工作在东南大学毫米波国家重点实验室完成。
东南大学 2021-04-11
首页 上一页 1 2
  • ...
  • 22 23 24
  • ...
  • 234 235 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    64届高博会于2026年5月在南昌举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1