高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
铁素体不锈钢中非金属夹杂物控制关键技术
铁素体不锈钢作为一种以铬为主要合金元素的钢种,具有含镍不锈钢所具有的成型性、耐蚀性、抗氧化性等性能,同时由于成本低、耐应力腐蚀性能优异等显著特点,被称为经济型不锈钢,而被广泛的应用于电梯面板、建筑装饰和汽车排气系统等领域。在超纯铁素体不锈钢生产过程中,为了有效固定不锈钢中的 C、N 元素,Ti 元素常常作为合金元素而被大量加入。如果控制得当,生成的 TiN夹杂物将作为铁素体异质形核的核心,促进等轴晶的生长,同时还能起到细化晶粒、沉淀强化等作用。然而,如果控制不当,在连铸坯表面生成大量的 TiN 夹杂物,将严重影响冷轧板的表面质量,如导致白色条纹缺陷等。因此,很有必要开展铁素体不锈钢中非金属夹杂物控制关键技术研究。(1)铁素体不锈钢冶炼 Ti-N 积控制技术。在超纯铁素体不锈钢冶炼过程中,常常加入 Ti 元素固定不锈钢中的 C、N 元素,形成的 TiN 夹杂物能够促进等轴晶的生长,起到细化晶粒、沉淀强化等作用。然而 Ti-N 积如果控制不当,会在连铸坯中形成分布不均匀的 TiN 夹杂物,轧制过程中密集分布的 TiN 夹杂物将沿轧制方向延展,最终在冷轧板表面形成白色条纹缺陷。图 1 所示为不同 Ti-N 积条件下对应的冷轧板表面白色条纹缺陷发生率:当 Ti-N 积大于 0.0025 时,白色条纹缺陷率急剧增加同时也将大于 20%。因此需要将 Ti-N 积控制在 0.0025 以下。(2)氧化物异质形核技术。铁素体不锈钢连铸坯中 TiN 夹杂物的形核主要包括两种方式,即均质形核与异质形核。异质形核可以影响 TiN 夹杂物在连铸坯中的数量、尺寸以及分布,更有利于 TiN 夹杂物均匀地分布在连铸坯中。对由 Mg、Al、Si、Ca 四种元素组成的共 15 种氧化物进行异质形核核心的考察发现,促进TiN 形核的氧化物主要包括五种,分别为 CaO、Al 2 O 3 、Al-Ca 氧化物、Mg-Al 氧化物和 Mg-Al-Ca 氧化物,而这其中又以含 Ca 的氧化物,即 CaO、Al-Ca 氧化物和Mg-Al-Ca 氧化物为主。值得注意的是,钢中的含 Si 氧化物,即 SiO 2 、Si-Ca 氧化物、Al-Si 氧化物、Mg-Si 氧化物、Mg-Al-Si 氧化物、Mg-Si-Ca 氧化物、Al-Si-Ca氧化物以及 Mg-Al-Si-Ca 氧化物均不能有效的促进 TiN 夹杂物异质形核。而钢中未发现MgO作为TiN夹杂物的异质形核核心的原因可能为钢中没有纯的MgO夹杂物。(3)连铸坯表面精准扒皮技术。采用 Aspex 观测和统计 TiN 夹杂物在铁素体不锈钢连铸坯表层的分布情况,结果表明:越远离连铸坯的表面,TiN 夹杂物的数量密度呈减小的趋势,平均尺寸呈增大趋势。尤其是在连铸坯表层下 4mm 范围内,TiN 夹杂物的数量密度很大并且由表层向内呈快速递减的趋势。同时在连铸坯表层 10mm 内,TiN 夹杂物的数量在平行于內弧面的分布是不均匀的,尤其是在连铸坯表层 4mm 内,TiN 夹杂物的数量密度很大并且分布极不均匀。因此,为了避免在超纯铁素体不锈钢冷轧板表面生成白色条纹,建议将连铸坯表层的扒皮厚度为 4mm。
北京科技大学 2021-04-13
高水头、高流速下水力机械耐空蚀及磨蚀铁基合金
南京工程学院 2021-04-13
高密度铁基粉末冶金制品制备关键技术研究
针对我国高品质粉末冶金铁基材料制备技术较薄弱的问题,在高品质铁基粉末和高性能铁基制品制备技术方面取得了突破。以 LAP100.29 水雾化铁粉作为高密度低合金粉末基粉,添加母合金粉末、增塑剂经塑化处理后,再添加专用润滑剂和石墨进行混合。首先将水雾化铁粉及合金粉末进行粒度搭配,提高堆积密度;然后通过粉末结化处理,提高混合粉末的流动性、合金成分均匀性;接着通过粉末塑化处理,改善铁粉颗粒整体塑性,从而获得了具有高压缩性的专用高密度成形粉末(图 7)。合批粉末的松比为 3.2~3.4g/cm3,流动性≤30s/50g,压缩性≥7.6g/cm3,粉末显微组织如图 2 所示。在混粉阶段,设计制作了 5 吨/h 专用连续式混合装置(如图 6 所示),通过软化处理的复合粉末及粘结剂、石墨等的定量供给和高效混合,合批制成高密度专用粉末,从而实现粘结化粉末的连续、稳定的批量化生产。图 1 连续式混粉装置图 2 水雾化铁粉和预处理后粉末显微组织基于粉体塑性特性和改性原理,通过优化粉体粒度组成、改善粉体塑性变形能力,再结合高密度成形技术制备出高密度铁基制品。首先将水雾化铁粉及合金粉末进行粒度搭配,提高堆积密度;然后通过粉末结化处理,提高混合粉末的流动性、合金成分均匀性;接着通过粉末塑化处理,改善铁粉颗粒整体塑性,从而获得了具有高压缩性的专用高密度成形粉末。在混粉阶段,设计制作了连续式混合装置,通过软化处理的复合粉末及粘结剂、石墨等的定量供给和高效混合,实现粉末的连续、稳定的批量化生产。压制过程中,采用多模板多缸联动和计算机自动精确控制技术,提高压坯密度均匀性; 通过模壁润滑,降低粉末颗粒与模壁之间的外摩擦力,提高了压坯密度及其均匀性。采用高密度成形技术制备出密度为 7.5~7.55g/cm3 的高密度铁基制品,其抗拉强度、延伸率和疲劳强度都比普通铁基材料显著提高,具有综合力学性能优异,尺寸精度高,使用寿命长等优点,如图 8 所示。开发的高密度粉末冶金同步器系列及链轮系列等产品,已经通过了吉利集团、湖州求精、德尔福等公司的供货评审,目前已形成批量供货,项目期内实现产值 860 万元,利税 120 万元,如图 2 所示。建立了年产 5000 吨高密度铁基制品生产线,如图 4 所示。图 3 高密度铁基制品的拉伸曲线和疲劳性能图 4 典型的高密度铁基制品利用 δ 相烧结制备出接近全致密(>99.9%)的铁基软磁零件。利用加 P 液相烧结,大幅度降低了烧结温度,缩短烧结时间。在 1200C 烧结 2 小时,Fe-0.8%P 的相对密度可以达到为 98.5%。制备的铁基软磁材料的烧结致密度≥96%;磁导率(μm)≥6000,饱和磁感应强度≥1.6T,矫顽力≤110A/m。图 9 是烧结温度对高密度样品最大磁导率和矫顽力的影响规律。随着烧结温度的升高,高密度纯铁样品的磁导率提高,同时矫顽力下降;当烧结温度达到 1450°C 时,样品的磁性能有显著提高,如图 10 所示。升高温度可以进一步提高材料的致密度,并促经晶粒的长大完善,进而提高材料的磁性能,如图 11 所示。采用 HIP 和后续热处理工艺,制备出全致密的铁基软磁材料,能够进一步提高材料的磁性能。
北京科技大学 2021-04-13
褐铁型红土镍矿高效综合利用清洁生产新工艺
采用硝酸介质在温和浸出条件下实现了红土镍矿中镍、钴、铬、铝、铁等多组分综合利用,从生产源头消减和控制了废弃物的产出和排放,实现了清洁生产和节能减排,碱、酸介质再生循环率>90%。主要创新点为:①发明了褐铁型红土镍矿非常规介质温和提取镍钴新技术,实现镍、钴的选择性浸出,镍、钴 浸出率>90%,铁浸出率<1%;②提出褐铁型红土镍矿碱法活化预处理提取铬、铝新思路,在实现铬、铝高效提取的同时,镍、钴酸浸浸出率进一步提高至 95% 以上,浸出渣含铁富集至 62%以上;③均相高效沉淀除杂技术,使浸出液中的 铝以砂状氢氧化铝的形态沉淀析出,解决了氢氧化铝对镍、钴的吸附共沉淀; ④发明了酸介质再生循环/耦合生产硫酸钙晶须新技术,酸介质再生循环 率>93%,硫酸钙晶须的长径比>10
北京科技大学 2021-04-13
复合材料轻量化零部件制造技术在汽车、轨道交通领域的产业化应用
团队基于纤维增强复合材料低密度,高强度,材料性能可设计性强,抗腐蚀性和耐久性能好等特点,已开发出汽车的引擎盖、车门、行李箱盖、翼子板、后视镜、方向盘、排挡头、悬架弹簧、电池箱等汽车轻量化零部件,以及轨道车辆地板、内壁板、座椅、卫生间产品,相应成果在科协年会上得到李源潮、万钢等国家领导人肯定,人民日报等媒体进行报道。
吉林大学 2021-05-11
复合材料轻量化零部件制造技术在汽车、轨道交通领域的产业化应用
项目成果/简介:团队基于纤维增强复合材料低密度,高强度,材料性能可设计性强,抗腐蚀性和耐久性能好等特点,已开发出汽车的引擎盖、车门、行李箱盖、翼子板、后视镜、方向盘、排挡头、悬架弹簧、电池箱等汽车轻量化零部件,以及轨道车辆地板、内壁板、座椅、卫生间产品,相应成果在科协年会上得到李源潮、万钢等国家领导人肯定,人民日报等媒体进行报道。应用范围:材料的轻量化,就是在保证汽车、轨道交通等零部件的强度和安全性能的前提下,尽可能地降低汽车、轨道交通的整备质量,从而提高汽车、轨道交通的动力性,减少燃料消耗,降低排气污染。由于环保和节能的需要,汽车、轨道交通的轻量化已经成为世界汽车、轨道交通发展的潮流,本成果具有较广阔的用途和市场应用前景。
吉林大学 2021-04-10
机械产品(汽车零部件)高强度铝合金铸造成型关键工艺的仿真模拟技术
该项技术针对机械产品铸造工艺的分析与改进,采用FLOW-3D或MagmaSoft软件进行铸件铸造过程中的充型、凝固过程进行数值模拟,分析其温度场、流场、压力场、氧化物含量、充填顺序以及缺陷分布等的变化情况,预测铸件的质量,掌握初期设计潜在的问题点,为初始设计阶段的模具设计、铸造工艺参数的制定与修改提供依据。
南京工业大学 2021-01-12
东南大学游雨蒙、熊仁根团队首次实现优异压电响应的应变控制周期性铁电畴
近日,东南大学化学化工学院江苏省“分子铁电科学与应用”重点实验室科研人员首次在分子铁电薄膜中实现优异压电响应的应变控制周期性铁电畴。
东南大学 2023-04-19
新型水溶性共轭芳构化木质素基聚合物分散导电聚合物PEDOT的规模化制备及应用推广
项目成果/简介:聚(3,4-亚乙基二氧基噻吩):聚苯乙烯磺酸盐(PEDOT:PSS)是最经典的空穴传输界面材料和柔性电极材料之一。PEDOT:PSS具有良好的光/热/电化学稳定性、成膜性和优异的可见光透过率等优点。然而,其酸性强,功函数相对低,我们从EDOT单体原材料出发,合成了一系列新型PEDOT衍生物,调控其各方面性能指标,在提高有机和钙钛矿光伏器件的效率和稳定性方面取得了一定进展。同时发展简单、高效的掺杂手段,以调节PEDOT:PSS的功能,并积极推动其在柔性电子及抗静电等领域的应用。应用范围:有机光电
华南理工大学 2021-04-10
新型水溶性共轭芳构化木质素基聚合物分散导电聚合物PEDOT的规模化制备及应用推广
聚(3,4-亚乙基二氧基噻吩):聚苯乙烯磺酸盐(PEDOT:PSS)是最经典的空穴传输界面材料和柔性电极材料之一。PEDOT:PSS具有良好的光/热/电化学稳定性、成膜性和优异的可见光透过率等优点。然而,其酸性强,功函数相对低,我们从EDOT单体原材料出发,合成了一系列新型PEDOT衍生物,调控其各方面性能指标,在提高有机和钙钛矿光伏器件的效率和稳定性方面取得了一定进展。同时发展简单、高效的掺杂手段,以调节PEDOT:PSS的功能,并积极推动其在柔性电子及抗静电等领域的应用。
华南理工大学 2021-02-01
首页 上一页 1 2
  • ...
  • 40 41 42
  • ...
  • 999 1000 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    64届高博会于2026年5月在南昌举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1