高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
技术需求;金属材料热处理、机械自动化、汽车悬挂系统设计研发
金属材料热处理、机械自动化、汽车悬挂系统设计研发
山东恒日悬架弹簧股份有限公司 2021-08-24
技术需求:非金属软材料3D工件加工,比如毛毡、软汽车内饰件等
非金属软材料3D工件加工,比如毛毡、软汽车内饰件等 高速智能复合材料的五轴联动精密加工设备
诺伯特智能装备(山东)有限公司 2021-08-30
重轨钢中非金属夹杂物控制关键技术
铁路作为一种现代化交通运输工具,在世界范围内具有广阔的发展前景。目前铁路发展的整体趋势是高速和重载化,对重轨钢质量提出了更高的要求,不仅要求高洁净度,高强度、高韧性,而且必须具有良好的抗疲劳性能。重轨钢生产过程及使用过程中,非金属夹杂物是影响其质量最重要的原因之一,常引起探伤不合、易产生疲劳裂纹等,主要是由于其钢中非金属夹杂物控制存在以下三个难题:(1)夹杂物尺寸大且化学成分复杂;(2)冶炼工艺复杂,尤其在于脱氧及精炼等重要环节;(3)尖晶石类夹杂物突出,严重恶化钢轨性能。因此,合理控制重轨钢中的非金属夹杂物,对重轨钢产品质量的提生及铁路事业的进步具有重要意义。(1)重轨钢冶炼脱氧及原辅料成分设计技术。重轨钢采用无铝脱氧工艺,但是在脱氧剂的使用方式及用量上缺乏理论指导,因此,重轨钢脱氧过程中必须对脱氧剂的使用方式及用量进行合理优化控制,本项目提出仅在转炉出钢时加入少量硅钙钡脱氧剂控氧,同时配合精炼扩散脱氧,能将钢中 T.O. 含量控制在 10 ppm以下,不仅有效节约了生产成本,而且促进了夹杂物的去除、有效降低了夹杂物的尺寸。在重轨钢冶炼原材料的控制方面,国内企业生产时更倾向于买价格低廉的铁合金等原材料,从而降低生产成本,但是对于铁合金及铁合金对重轨冶炼的影响研究几乎为空白。本项目提出了使用低铝铁合金,降低钢中的酸溶铝含量,抑制钢中高 Al 2 O 3 夹杂物的形成,从而提升夹杂物变形能力,有效防止因脆性夹杂物造成的疲劳缺陷。(2)重轨钢中硫化物夹杂控制技术. 由于 MnS 有良好的变形能力,而且重轨钢轧制过程中变形量大,MnS 夹杂物可能延伸很长,可能成为夹杂物超标和引起超声波探伤不合的重要原因之一。此外,大尺寸长条状 MnS 可能成为裂纹的起点,在应力作用下首先在和钢基体的交界处形成裂纹源。本项目首先通过优化精炼造渣制度进一步去除钢中 S 含量,提出将钢中得 S 降低到 40ppm 以下。其次,通过对重轨钢连铸坯及钢轨硫化物的分布进行研究分析,从而对冷却制度进行优化,提出先若冷后强冷的原则,使激冷层优先析出的大量细小的 MnS,减小其他凝固区的 S 的压力,从而来控制重轨钢中硫化物。此外,还提出了使用 CSC(Comparison-Segmentation-Combination)方法,计算了 MnS 在不同温度下在不同温度范围内的准确的热力学生成曲线,并研究了热处理工艺升温速率、保温温度和保温时间等对 MnS 夹杂物的影响,促进已生成的长条状 MnS 向弥散的纺锤形转变,从而达到控制 MnS 形态的目的。(3)重轨钢中尖晶石类夹杂控制技术 重轨钢采用无铝脱氧工艺,但是钢中发现MgO-Al 2 O 3 夹杂物,且部分尺寸较大,严重影响产品质量。本项目首先对重轨钢中尖晶石夹杂物的形成机理进行研究,得出重轨钢中危害较大的尖晶石类夹杂物来源于钢中复杂氧化物夹杂在降温冷却过程中的析出,从而提出使用低铝低镁合金,VD 前扒渣降低耐材侵蚀等减少夹杂物中 Al 2 O 3 和 MgO 含量,抑制尖晶石夹杂物的析出。此外,VD 前扒渣也有利于控制复杂氧化物夹杂中 CaO 含量的成分,对控制夹杂物的尺寸及提高产品质量有重要作用。
北京科技大学 2021-04-13
取向硅钢中非金属夹杂物控制关键技术
随着我国电力工业的不断发展,大型发电机组的制造的水平不断提高,对我国取向硅钢产品的性能提出了更高的要求。相比于一般钢铁产品,取向硅钢的制造工艺和设备复杂,生产过程影响因素众多,对化学元素和析出相的控制提出了极高的要求,因此被称为“钢铁中的艺术品”。目前,我国能够生产取向硅钢的企业只有宝武集团、首钢集团等少数企业。取向硅钢的磁性能受到钢成分和析出相的影响很大。其中由于其钢中非金属夹杂物和析出相控制存在以下两个难题:(1)取向硅钢在冶炼过程中,钢中化学成分要求实现窄成分控制,尤其是在精炼过程中对酸溶铝([Al] s )和钛([Ti])含量等的控制。其中钢中[Al] s 和[Ti]含量对硅钢铁损和磁感强度的影响很大,目前取向硅钢的[Al] s 很难稳定的达到的要求,钢中[Al] s 的命中率不高,同时[Ti]控制也不稳定。本项目通过洁净钢的冶炼技术,确定当前取向硅钢中影响硅钢磁性的主要元素为酸溶铝和钛含量,其控制目标为[Al] s =0.0265%±0.001%和[Ti]<25 ppm。(2)取向硅钢精炼渣成分设计技术。本项目首先通过工业实验数据和热力学计算研究了精炼渣对钢中酸溶铝和钛含量的变化的影响。通过动力学计算,重点研究了钢包镇静过程的不同时刻,钢中酸溶铝和钛含量的变化规律,为取向硅钢冶炼过程中酸溶铝和钛含量的变化的精准控制提供理论指导。本项目得出增加精炼渣碱度可以增加取向硅钢中[Al] s 含量。为了降低取向硅钢中[Ti]含量,应当严格控制精炼渣中 TiO 2 含量。,从而更系统准确地确定了有利于控制取向硅钢中[Al] s 和[Ti]含量的最优精炼渣成分。
北京科技大学 2021-04-13
管线钢中非金属夹杂物控制关键技术
石油和天然气是重要的能源矿产和战略资源,与国民经济、社会发展和国家安全息息相关。在石油天然气的运输过程中,管道输送具有经济性、安全性和连续性等优点。管线钢主要用于加工制造油气管线,性能上要求高强度、高韧性、良好的焊接性能和良好的抗腐蚀性能。而非金属夹杂物是影响管线钢性能的主要因素之一,主要危害有:(1)会造成水口结瘤,影响生产顺行;(2)能够能够导致管线钢产生疲劳裂纹;(3)会影响管线钢的冲击韧性;(4)会降低管线钢的抗腐蚀性能,尤其是 A 类和 B 类夹杂物,会造成氢致裂纹的产生;(5)会恶化管线钢的焊接性能。因此,开发了管线钢中非金属夹杂物控制关键技术,为我国管线钢产品质量的提升做出了贡献。(1)管线钢精准钙处理模型以及在线指导软件。钙处理是管线钢夹杂物的最主要方式,通过钙处理能够将 MnS 夹杂物改性为 CaS,将 Al 2 O 3 为主的夹杂物改性为钙铝酸盐,从而降低夹杂物对管线钢性能的危害。然而在大部分企业生产过程中,钙处理过程的钙线喂入量都缺乏一个标准,主要是依靠经验进行操作。由于各炉次的钢渣成分和温度等的差异,导致不同炉次间的钙处理效果波动很大,有些炉次钙处理后产品性能还发生恶化。本项目建立了管线钢精准钙处理模型,通过对管线钢不同钢液成分和温度条件下钙处理窗口进行的计算,确定了管线钢的不同成分条件下最优的喂钙线量。与国外同类型模型相比,考虑的工艺条件更完全,考虑的反应物和产物也更全面,因此也更接近生产实际,准确率更高。同时,以管线钢精准钙处理模型为基础开发出了钙处理在线指导软件,可实现管线钢生产过程中针对每一炉次的工况条件进行精准喂钙量的在线指导,并已实现了在管线钢生产中的在线应用,计算结果更直观。(2)低钙含量处理控制管线钢 B 类夹杂物技术。传统的管线钢钙处理一般都是采用高钙处理路线来使夹杂物改性为高 CaO 含量的较高熔点钙铝酸盐,如图 2中窗口 B 所示。但是在高钙含量处理时容易在钙处理后生成大尺寸钙铝酸盐夹杂物,而且在钙处理后的过程中由于钢中 Ca 的挥发或者钢液二次氧化的消耗,钢中钙含量会有所降低,导致高熔点钙铝酸盐往液态钙铝酸盐转变,当尺寸较大时会在轧板中形成 B 类夹杂物,危害产品性能。因此,本项目从另一角度考虑,开发了低钙含量处理控制管线钢 B 类夹杂物技术,如图 2 中窗口 C 所示,即高 Al 2 O 3一侧的 50%液相点至 100%液相开始点所对应的 T.Ca 含量范围。在此情况下,夹杂物由部分液相和部分固相组成,这样既不会在浇铸过程发生水口结瘤,又不至于在轧制过程中形成 B 类夹杂,同时由于喂入的钙含量较低,整体上夹杂物尺寸要更小。此技术应用到企业的管线钢生产实践中,能够有效减小夹杂物尺寸和降低 B 类夹杂物评级。(3)含 Ca 硅铁钙处理技术。在管线钢生产过程中会添加大量的合金,合金的纯净度会对钢液成分甚至钢中夹杂物产生重要影响,一般来说这种影响是有害的或者是无用的。本项目针对硅铁合金中含有一定量的 Ca,通过研究变废为宝,开发了含 Ca 硅铁钙处理技术,并应用于管线钢的生成,实现了用硅铁合金代替钙线来进行管线钢夹杂物的钙处理改性,降低生产成本。首先通过钙处理模型计算得到夹杂物改性所需的钙含量,然后在总的硅铁加入量不变的情况下根据硅铁合金中的 Ca 含量计算得到在出钢工序和钙处理工序的硅铁合金分配量,进而实现夹杂物的精准钙处理改性,如图 3 所示。此技术的优点包括:(1)总的硅铁合金加入量不变,不会增加额外成本;(2)减少甚至取消了钙线的喂入,降低了生产成本;(3)硅铁合金钙处理过程钙的收得率高,而且不会造成钢液的喷溅,因此不会恶化钢液的洁净度。
北京科技大学 2021-04-13
金属功能材料
通过对烧结钴铁氧体进行热等静压烧结,得到钴铁氧体陶瓷材料的样品内部孔隙大大减少,致密度大于 99%;平行方向磁致伸缩系数绝对值大于 150ppm;磁致伸缩激励场低于 2000Oe。对钴铁氧体磁致伸缩材料进行热等静压处理促进了其在低场高频磁致伸缩领域的应用。 通过凝胶注模、磁场取向及常压烧结及热处里工艺,得到的钴铁氧体磁致伸缩材料<100>方向取向度大于 40%,致密度大于 99%,垂直取向方向磁致伸缩系数绝对值大于 300ppm,对应的激励场低于 2000Oe。
北京科技大学 2021-02-01
金属功能材料
通过对烧结钴铁氧体进行热等静压烧结,得到钴铁氧体陶瓷材料的样品内部孔隙大大减少,致密度大于 99%;平行方向磁致伸缩系数绝对值大于 150ppm;磁致伸缩激励场低于 2000Oe。对钴铁氧体磁致伸缩材料进行热等静压处理促进了其在低场高频磁致伸缩领域的应用。通过凝胶注模、磁场取向及常压烧结及热处里工艺,得到的钴铁氧体磁致伸缩材料<100>方向取向度大于 40%,致密度大于 99%,垂直取向方向磁致伸缩系数绝对值大于 300ppm,对应的激励场低于 2000Oe。
北京科技大学 2021-04-13
轴承钢中非金属夹杂物控制关键技术
随着我国国民经济的不断发展,对轴承钢性能提出了更高的要求。超纯净轴承钢被广泛地应用于高速铁路、风电装备、航空发动机、高档轿车变速箱、高速精密机床和长寿命冶金轧机等对使用寿命、可靠性、承载能力严格要求的领域。超纯净轴承钢炼钢冶炼难度极高,主要是由于其钢中非金属夹杂物控制存在以下两个难题:(1)超高洁净度,总氧含量低于 5 ppm;(2)大颗粒夹杂物数量要求少,尺寸小于 15 μm。近 30 年来,通过引进、消化和吸收,实现了大部分高端装备的国产化,但对高端装备用高可靠长寿命轴承的国产化一直没有解决。因此,开发超纯净轴承钢中非金属夹杂物控制关键技术,为打破此领域国外产品及技术垄断、实现国内自主生产有重要意义。(1)超纯净轴承钢精炼渣成分设计技术. 铝脱氧轴承钢都是通过高碱度精炼渣提升钢材的洁净度,减少钢中夹杂物数量。高碱度精炼渣具有很高的脱氧脱硫能力,效率高,可生产超低硫轴承钢。由于高碱度精炼渣中 CaO 含量高,易被钢中[Al]还原而进入钢液,从而生成 Ds 类夹杂,对轴承钢性能产生不利影响。另外,高碱度使精炼渣熔点变高,成渣慢,炉渣流动性变差,会影响脱氧脱硫效果,有可能引起卷渣。低碱度精炼渣由于碱度低,降低了 CaO-Al 2 O 3 类夹杂的影响,但脱氧能力下降使得氧化物夹杂上升。本项目研究应用 FactSage 热力学计算软件,研究了不同精炼渣成分对钢液成分、夹杂物成分的影响,通过对不同精炼渣系进行设计优化,确定精炼渣成分;同时,本项目在碱度 7-12 范围内进行工业试验,考虑了不同碱度精炼渣对轴承钢洁净度和夹杂物成分的影响,从而更系统准确地确定了有利于超纯净轴承钢夹杂物控制的最优精炼渣成分。图 1 精炼渣碱度对渣中 Al 2 O 3 和 CaO 活度的影响(2)超纯净轴承钢 VD 精炼控制技术.在真空状态下吹氩搅拌钢液,促使夹杂物从钢液内排除,使钢的洁净度提高。VD 精炼过程渣钢剧烈反应,渣中 CaO、MgO 被还原为[Ca]和[Mg]进入钢液,与钢中 Al 2 O 3 夹杂物反应生成镁铝尖晶石和钙铝酸盐,导致钢中 Ds 类夹杂数量增加,可能导致水口结瘤和最终轧材中出现Ds 类夹杂缺陷,影响轴承钢的质量水平,VD 精炼真空度的控制对于夹杂物的上浮去除和夹杂物成分非常重要。本项目对 VD 真空度进行了优化,使得最终产品夹杂物中的 CaO 含量由 30%左右降低至 5%以下,显著减少了 CaO-Al 2 O 3 和CaO-Al 2 O 3 -MgO 复合夹杂物的生成,使钢中夹杂物由 CaO-Al 2 O 3 类转变为镁铝尖晶石类,减轻了 Ds 类夹杂的危害。图 2 不同 VD 真空度条件下轴承钢轧材中夹杂物成分(3)热处理过程夹杂物成分控制技术。对于轴承钢钢液中的夹杂物已经形成了一系列脱氧、精炼渣改性、真空精炼等成熟的夹杂物控制方法,可以较好实现冶炼过程从精炼到连铸过程夹杂物的有效控制。轴承钢轧制热处理过程不仅能够改变钢的组织结构和性能,也会使得氧化物夹杂与钢基体发生高温反应,造成钢基体成分偏析、原有氧化物夹杂的改变和新氧化物夹杂的析出。同时,热处理过程钢基体中氧化物夹杂的种类、性质、尺寸及形貌特征变化直接影响着最终轴承钢产品的组织和性能。本项目研究了在不同热处理温度(1225o C、1300 o C 和1375o )和热处理时间条件下,GCr15 轴承钢中非金属夹杂物的演变规律,并且发现热处理过程轴承钢中的 MgO-Al 2 O 3 -CaO 会逐渐转变为 MgO-Al 2 O 3 -CaS 夹杂物,小尺寸夹杂物完成转变所需时间较短,而大尺寸夹杂物完成转变所需时间较长。在不同热处理温度下,钢中夹杂物尺寸基本不变,但夹杂物转变速率不同。通过热力学计算和动力学模型,对轴承钢热处理过程中夹杂物的转变机理进行揭示。
北京科技大学 2021-04-13
无取向硅钢中非金属夹杂物控制关键技术
随着我国电力电机行业的迅猛发展,对资源和能源的高效利用提出了更高的挑战。无取向硅钢是广泛的用于电机和发电机铁心的软磁材料。铁心材料的优异能够直接影响电机和发电机的效率和能耗。影响无取向电工钢磁性能的主要因素有杂质元素的含量、夹杂物的种类尺寸含量、织构类型、晶粒尺寸、表面状态等因素。由于受限于目前所掌握的炼钢方法的不足,尚不能完全将钢中的 C、O、S、N 等元素去除。这些夹杂物和析出物在脱氧过程、钢液凝固过程以及轧制热处理过程形成和转变。这些残留在钢中的元素最终大部分以碳化物、氧化物、硫化物、氮化物以及他们之间的复合夹杂物形式存在。一方面,这些夹杂物和析出物会在无取向硅钢磁化过程中阻碍磁畴壁的移动,影响磁性能;另一方面,在再结晶退火过程中,这些夹杂物和析出物还会促进不利取向织构形核和阻碍晶粒长大,从而恶化无取向硅钢磁的组织,恶化磁性能。因此如何控制这些夹杂物的种类、分布、尺寸等因素对于减小这些夹杂物和析出物对无取向电工钢的磁性能的影响就显得尤为重要。(1)不同化学成分体系无取向硅钢的关键夹杂物和析出物预测。无取向硅钢作为一种功能材料,其最关键的性能指标是磁性能,包括铁损和磁感应强度。化学成分体系是影响其磁性能的最关键因素。由于不同牌号,不同生产工艺生产出的无取向硅钢,其中的夹杂物和析出物的种类、形态、尺寸和数量相差很大。而不同种类的夹杂物和析出物的控制方法又不相同。本项目中通过大量分析不同性能和不同成分体系的无取向硅钢样品、采用透射电镜、场发射扫描电镜、ASPEX 自动扫描电镜对无取向硅钢成品中的微米、亚微米和纳米级夹杂物和析出物进行定量分析。并通过商业热力学计算软件 FactSage 对不同成分体系下夹杂物和析出物种类进行预测分析。从而能够预测不同成分体系的无取向硅钢中应该控制的关键夹杂物和析出物种类。(2)无取向硅钢中钙处理控制硫化物技术。钙处理是钢铁工业中最常用的改性夹杂物的手段之一。但是通常来说,向钢中加钙是为了将固态的 Al 2 O 3 改性为液态的钙铝酸盐,以避免水口结瘤现象的发生。但是同时钙和硫具有很强的结合能力,可以与硫元素反应生成 CaS,这样可以避免在无取向硅钢中生成细小的(Mn,Cu)S,影响磁性能。由于钙加入钢中首先会和钢中的 Al 2 O 3 反应,过量的钙才会和硫反应。钢中的氧含量的多少影响着向改性硫化物所需要的钙含量。我们通过热力学分析和实验发现,在降温过程,钙铝酸盐还会和钢中的溶解铝和溶解硫反应,生成 Al 2 O 3 +CaS。通过理论分析,确定了能够完全将硫控制的最少加钙量。图 2 所示为不同的 Ca/S 对铁损的影响,通过合适的加钙量,可以有效减少细小(Mn,Cu)S 的数量,从而改善磁性能。但是值得指出的是也要尽可能在钢液下去除生成的钙铝酸盐,因为大尺寸的夹杂物会在再结晶过程诱导{111}织构生成,从而对磁性能不利。(3)无取向硅钢中铈处理控制硫化物技术。稀土元素和氧、硫也具有的很强的结合能力。因此也可以用来改性钢中的非金属夹杂物。但是,稀土也面临着与钙改性夹杂物同样的问题,既可以和钢中的硫反应,还可以和氧元素反应。而目前对于稀土改性夹杂物的研究都停留在定性的解释上。本研究通过实验室实验,详细的研究了不同铈含量和氧含量对铈改性夹杂物和控制无取向硅钢中细小硫化物的影响。最终建立了稀土改性夹杂物成分预测模型,此模型的预测结果与实验结果一致。根据此模型结果,可以得出图 3所示不同 T.Ce/T.S.对固硫率的影响。当 T.Ce/T.S.>2.9 时,可以有效控制细小的硫化物。
北京科技大学 2021-04-13
帘线钢中非金属夹杂物控制关键技术
钢帘线被誉为是线材中的顶级产品,被誉为“皇冠上的明珠”。它是伴随着子午线轮胎的发展而发展起来的。以钢帘线为骨架材料的子午线轮胎具有高速、高载、耐久等一系列优良特性。随着汽车工业的发展,用于制造子午线轮胎的钢帘线需求量不断增加,同时对钢帘线的品种、性能及质量提出新的要求。作为生产钢帘线的原材料,帘线钢质量很大程度上决定了帘线的品质。帘线钢的洁净度,元素偏析等级,尤其是钢中夹杂物的形态对后续产品有着极大的影响。非金属夹杂物易引起钢丝拉拔和合股过程中断丝的发生,因此要求帘线钢中夹杂物尺寸小,且在轧制和冷拔等加工过程中具有良好的变形性能。根据子午轮胎产品性能和太阳能级硅产业的发展要求,钢帘线和切割丝向着超高强度(4000 MPa 及以上)方向发展,开发高强度、超高强度帘线钢丝,对实现轮胎的轻量化、降低用燃料的费用、降低生产成本意义重大。目前国内依旧不能稳定、高效的生产高牌号的帘线钢,开发帘线钢冶炼关键技术对提升企业生产技术水平和质量控制水平,取代进口高端钢帘线产品意义重大。(1)帘线钢冶炼过程原辅料成分设计技术。帘线钢生产过程中一般采用Si-Mn 复合脱氧,但由于合金和辅料中存在 Al 的来源,帘线钢主要的夹杂物为MnO-Al 2 O 3 -SiO 2 系和 CaO-Al 2 O 3 -SiO 2 系两类。其中,MnO-Al 2 O 3 -SiO 2 为脱氧反应产物,CaO-Al 2 O 3 -SiO 2 为钢渣反应生成。不同工序氧化物复合夹杂类型会发生转变,大量研究表明转炉出钢、精炼过程随着钢液成分的变化,夹杂物的成分在不断变化中。实际生产中使用的各种物料,包括合金、脱氧剂及钢包内衬直接影响钢液成分,进而改变钢液中非金属夹杂物的成分。高端帘线钢中非金属夹杂物主要成分为 SiO 2 -MnO,几乎没有 Al 2 O 3 的存在,因此在实际的生产过程中杜绝任何含 Al的原料。国内企业在实际生产时更倾向于使用价格低廉的合金、脱氧剂等原料以降低生产成本,为此本项目不仅研究了合金、脱氧剂、耐材等物料中 Al 的含量,还研究了各物料对钢液成分以及非金属夹杂物成分的影响程度,以选择更高性价比的物料搭配。在使用不同物料后取样分析,发现合金对钢液中非金属夹杂物的影响最大,低铝硅铁和普通硅铁对钢液中非金属夹杂物的成分影响如图 1,可以看出合金的使用直接改变夹杂物的体系。实际生产过程中可根据产品等级和各物料对钢中非金属夹杂物的影响,针对性的使用物料控制生产成本。(2)帘线钢精炼渣成分设计技术. 炉渣成分对钢液成分有着直接影响,帘线钢精炼一般采用 CaO-SiO 2 -Al 2 O 3 渣系,精炼渣的成分对钢中夹杂物的控制起重要作用。研究表明精炼渣中相同 Al 2 O 3 含量的条件下,钢液中[Al]s 含量随精炼渣碱度增高而增高;相同碱度的条件下,钢液中 Als 含量随精炼渣中 Al 2 O 3 含量增加而增加。当精炼渣的碱度为 1.0 时,钢液中[Al]s 随渣中 Al 2 O 3 含量增加亦呈增加趋势, [Al]s 增量有限。同时,夹杂物中 Al 2 O 3 和 MnO 含量取决于渣-钢间的氧势,如氧势高,则夹杂物中 MnO 含量高。反之,当系统氧势低时,渣中CaO 和 Al 2 O 3 会有少部分被还原进入钢液,夹杂物 CaO 和 Al 2 O 3 含量增加,MnO 含量减少。在实际的冶炼过程中,精炼渣进入钢液是不可能完全避免的,精炼渣进入钢液后将形成含大量 CaO、Al 2 O 3 的夹杂物。对此为控制钢中非金属夹杂物的成分将精炼渣的碱度控制在 CaO/SiO 2 ≤1,实际生产过程中,精炼渣的最佳成分还应根据精炼过程的渣钢比,所使用合金、脱氧剂、耐材等条件进行优化。(3)帘线钢中夹杂物变形性能评估模型。许多研究认为低熔点夹杂物在轧制和加工过程中变形更好。如果轧制过程中夹杂物是液态的,那这毫无疑问是对的。 102 / 298然而,实际的轧制温度往往大部分都低于夹杂物的熔点。在轧制温度降到夹杂物固相线温度以前,虽然夹杂物不是液态,但是由于软化它们仍然具有一定的变形性。然而,当温度降低至固相线以下时,夹杂物将完全转变为固态。并且,钢的变形不仅包括轧制,还包括其他冷加工,譬如,帘线钢冷拔过程的温度基本为室温,显著低于夹杂物的固相线温度。因此,只用熔点来评估冷拔或冷轧过程中夹杂物的变形性能不太合理或者说不太全面。本项目提出使用低温下夹杂物的杨氏模量评估变形能力的模型,认为氧化物变形能力与杨氏模量大小成反比,并拟合了低温下的氧化物杨氏模量与平均原子体积关系:2.939811 E V ,对Al 2 O 3 -SiO 2 -CaO 系和 Al 2 O 3 -SiO 2 -CaO 系氧化物的低温杨氏模量进行了计算,如图 2所示。由于冷拔过程氧化物变形能力与杨氏模量大小成反比,为了降低冷拔过程的断丝率,夹杂物需要控制到图中所示的深蓝色区域,即要求具有很高的 SiO 2含量和极低的 Al 2 O 3 含量。由图还可知,由于具有最大的杨氏模量,Al 2 O 3 对帘线钢中氧化物的变形性能最为有害,这也是为什么帘线钢生产过程中需要严格控制钢中 Al 含量。
北京科技大学 2021-04-13
首页 上一页 1 2 3 4 5 6
  • ...
  • 248 249 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    63届高博会于5月23日在长春举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1