高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
淀粉空心纳米颗粒的制备工艺及其应用
本发明涉及空心纳米颗粒领域,具体涉及淀粉空心纳米颗粒的制备工艺及其在食品和药品领域的应用。制备工艺步骤如下:用CaCO3纳米颗粒作为模板,0.5%‑2.0%糊化的淀粉乳作为壳,得到核壳结构的CaCO3@淀粉纳米颗粒;将CaCO3@淀粉纳米颗粒分散在乙二胺四乙酸溶液中,轻微搅拌20min,离心,水洗,冷冻干燥得到淀粉空心纳米颗粒。本发明淀粉空心纳米颗粒粒径在30‑300nm之间,对组织的附着力强。既
青岛农业大学 2021-01-12
一种新型颗粒茶及其制备工艺
本发明提供了一种新型颗粒茶及其制备工艺。按重量计,包括以下组份:紫薯全粉50-80份,胭脂萝卜粉0-30份,玉米淀粉15-30份,黄原胶0-1份,瓜尔胶0-1份,柠檬酸0-2份,水65-80份。配方利用预先糊化的玉米淀粉在黄原胶、瓜尔胶的协同增效作用下共同作为成型剂。成型剂与胭脂萝卜粉、紫薯全粉混合后,起到固定形态的作用,不需要通过高温炒制即可成型,有效保护了花青素成分。本发明采用低温干燥和中低温烘烤工艺,避免了高温对原料活性成分的破坏,能够较好的保存原料的功能性成分。
四川大学 2016-10-27
功能化纳米材料单颗粒光谱学
在努力打造世界顶尖的光学成像与多维度分析仪器平台,指导和推动新型功能材料的开发,从而为纳米光学、光电子技术、超分辨亚细胞成像、单分子检测、量子通讯和大数据存储等领域的下一次突破提供“利器”。 当今的纳米材料合成已经实现了高度可控,但即使是同一批次合成的发光纳米粒子,单个颗粒的光学性质往往是不均匀的,这是由于尺寸、形状、结构缺陷、表面基团和电荷等方面的细微影响。这一构效关系是与材料科学、
南方科技大学 2021-04-14
颗粒物、粉体浓度在线测量装置
在化工、食品处理、电力等生产过程中广泛遇到粉体气力输送问题,过程中粉体的速度、浓度、粒度等关键参数对于实现过程优化控制,提高生产效率具有重要意义。本装置主要用于粉体气力输送过程中对粉体的速度、浓度、粒度等关键参数进行在线监测。 装置结构简洁,主要由一体式超声波探针、信号发射接收仪、粉体参数监测程序和计算机组成。其工作原理是:超声波穿过颗粒物介质时,其声波幅值、传播速度等物性参数会发生变化,且变化量的大小与颗粒物密度、颗粒物粒径、浓度等参数直接相关。从颗粒动力学角度建立能够准确描述两相离散系中声波动的数学模型,将声衰减计算归集为高阶线性方程组的求解。进而能够利用测量得到的声衰减量或声速度谱等信息反演计算得出两相离散体系中颗粒相的粒度、浓度、速度等参数。
上海理工大学 2021-04-13
先进陶瓷、金属间化合物和复合材料的燃烧合成粉末
本项目采用拥有我国自主知识产权的燃烧合成技术生产技术生产各种先进陶瓷,金属间化合物和复合材料的粉末。提供的主要产品有:a-Si3N4,b-Si3N4,a-Sialon,b-Sialon,AlN,TiN,ZrN,TiC,TiCN,TiB2,SiC,Cr3C2,MoSi2,FeAl,Fe-TiN,Fe-TiC,Fe-TiB2,Cu-TiB2,TiB2-Al2O3,AlN-ZrN-Al3Zr,Si3N4-SiC-TiCN,Si3N4-Si2N2O-TiCN,TiN-TiB2以及纳米电子陶瓷BaTiO3粉末,纳米ZrO2及ZrO2基陶瓷,纳米TiO2粉末。采用这种先进工艺合成反应完全,性能稳定,质量优良,欢迎各界用户洽谈业务。 用于各工业领域耐磨、耐腐蚀、耐高温等严酷服役条件下工作的结构部件。
北京科技大学 2021-04-11
高密度铁基粉末冶金制品制备关键技术研究
针对我国高品质粉末冶金铁基材料制备技术较薄弱的问题,在高品质铁基粉末和高性能铁基制品制备技术方面取得了突破。以 LAP100.29 水雾化铁粉作为高密度低合金粉末基粉,添加母合金粉末、增塑剂经塑化处理后,再添加专用润滑剂和石墨进行混合。首先将水雾化铁粉及合金粉末进行粒度搭配,提高堆积密度;然后通过粉末结化处理,提高混合粉末的流动性、合金成分均匀性;接着通过粉末塑化处理,改善铁粉颗粒整体塑性,从而获得了具有高压缩性的专用高密度成形粉末(图 7)。合批粉末的松比为 3.2~3.4g/cm3,流动性≤30s/50g,压缩性≥7.6g/cm3,粉末显微组织如图 2 所示。在混粉阶段,设计制作了 5 吨/h 专用连续式混合装置(如图 6 所示),通过软化处理的复合粉末及粘结剂、石墨等的定量供给和高效混合,合批制成高密度专用粉末,从而实现粘结化粉末的连续、稳定的批量化生产。
北京科技大学 2021-02-01
具有片状解理晶粒结构的β-TCP生物陶瓷粉末的制备
研发阶段/n该发明提供具有片状解理晶粒结构的β-TCP生物陶瓷粉末的制备工艺。采用本发明方法时,首先按摩尔比为2∶1称取计算量的二水磷酸氢钙和碳酸钙,混匀后在电炉中加热升温到930℃,保温3小时;然后将粉末取出,直接用液氮急冷,再将其放入930℃的炉中急热,随炉自然冷却;最后将粉末置于原始Ringer液中37℃恒温浸泡7天,取出干燥,得到的粉末主晶相为β-TCP,单晶粒具有片状解理结构。 优势:制得的粉末主晶相为β-TCP,并且单晶粒具有片状解理结构,从而有利于材料在人体内的降解。
武汉理工大学 2021-01-12
高密度铁基粉末冶金制品制备关键技术研究
针对我国高品质粉末冶金铁基材料制备技术较薄弱的问题,在高品质铁基粉末和高性能铁基制品制备技术方面取得了突破。以 LAP100.29 水雾化铁粉作为高密度低合金粉末基粉,添加母合金粉末、增塑剂经塑化处理后,再添加专用润滑剂和石墨进行混合。首先将水雾化铁粉及合金粉末进行粒度搭配,提高堆积密度;然后通过粉末结化处理,提高混合粉末的流动性、合金成分均匀性;接着通过粉末塑化处理,改善铁粉颗粒整体塑性,从而获得了具有高压缩性的专用高密度成形粉末(图 7)。合批粉末的松比为 3.2~3.4g/cm3,流动性≤30s/50g,压缩性≥7.6g/cm3,粉末显微组织如图 2 所示。在混粉阶段,设计制作了 5 吨/h 专用连续式混合装置(如图 6 所示),通过软化处理的复合粉末及粘结剂、石墨等的定量供给和高效混合,合批制成高密度专用粉末,从而实现粘结化粉末的连续、稳定的批量化生产。图 1 连续式混粉装置图 2 水雾化铁粉和预处理后粉末显微组织基于粉体塑性特性和改性原理,通过优化粉体粒度组成、改善粉体塑性变形能力,再结合高密度成形技术制备出高密度铁基制品。首先将水雾化铁粉及合金粉末进行粒度搭配,提高堆积密度;然后通过粉末结化处理,提高混合粉末的流动性、合金成分均匀性;接着通过粉末塑化处理,改善铁粉颗粒整体塑性,从而获得了具有高压缩性的专用高密度成形粉末。在混粉阶段,设计制作了连续式混合装置,通过软化处理的复合粉末及粘结剂、石墨等的定量供给和高效混合,实现粉末的连续、稳定的批量化生产。压制过程中,采用多模板多缸联动和计算机自动精确控制技术,提高压坯密度均匀性; 通过模壁润滑,降低粉末颗粒与模壁之间的外摩擦力,提高了压坯密度及其均匀性。采用高密度成形技术制备出密度为 7.5~7.55g/cm3 的高密度铁基制品,其抗拉强度、延伸率和疲劳强度都比普通铁基材料显著提高,具有综合力学性能优异,尺寸精度高,使用寿命长等优点,如图 8 所示。开发的高密度粉末冶金同步器系列及链轮系列等产品,已经通过了吉利集团、湖州求精、德尔福等公司的供货评审,目前已形成批量供货,项目期内实现产值 860 万元,利税 120 万元,如图 2 所示。建立了年产 5000 吨高密度铁基制品生产线,如图 4 所示。图 3 高密度铁基制品的拉伸曲线和疲劳性能图 4 典型的高密度铁基制品利用 δ 相烧结制备出接近全致密(>99.9%)的铁基软磁零件。利用加 P 液相烧结,大幅度降低了烧结温度,缩短烧结时间。在 1200C 烧结 2 小时,Fe-0.8%P 的相对密度可以达到为 98.5%。制备的铁基软磁材料的烧结致密度≥96%;磁导率(μm)≥6000,饱和磁感应强度≥1.6T,矫顽力≤110A/m。图 9 是烧结温度对高密度样品最大磁导率和矫顽力的影响规律。随着烧结温度的升高,高密度纯铁样品的磁导率提高,同时矫顽力下降;当烧结温度达到 1450°C 时,样品的磁性能有显著提高,如图 10 所示。升高温度可以进一步提高材料的致密度,并促经晶粒的长大完善,进而提高材料的磁性能,如图 11 所示。采用 HIP 和后续热处理工艺,制备出全致密的铁基软磁材料,能够进一步提高材料的磁性能。
北京科技大学 2021-04-13
铁基、钴基、镍基非晶合金粉末的生产方法
该技术采用共沉积+剥离+破碎法制备非晶合金粉末,摆脱了水雾法对非晶成形能力的限制,适用于可以与铁、钴、镍一起共沉积元素合金体系非晶合金粉末的生产。该粉末适合用于磁性材料、催化剂等领域。 该成果已申请一系列(镍基、铁基、钴基的非晶电镀,非晶粉末,催化电极等)发明专利,已有部分取得授权。
长沙理工大学 2021-01-12
一种IIB-VIA族化合物粉末的合成方法
一种IIB-VIA族化合物粉末的合成方法,以VIA族非金属粉末和IIB族金属粉末为原料,使用包括坩埚、管式反应室和移动式加热炉的合成装置,原料平铺在坩埚内,坩埚放入管式反应室并将管式反应室关闭和密封,采用向管式反应室充入保护气体、或同时抽真空和充入保护气体的方式将管式反应室内的压强调节至1×102~1×105Pa,在炉温升至500~800℃时控制移动式加热炉以5~20cm/min速率移动,当移动式加热炉从管式反应室装有坩埚部段的一外侧移动至另一外侧,即完成了IIB-VIA族化合物的合成反应,然后将移动式加热炉的炉温升至700~1000℃,并使移动式加热炉在管式反应室装有坩埚部段往返移动1~2次,即完成退火处理。此种方法安全、工艺简单,制备的IIB-VIA族化合物粉末粒径均匀。
四川大学 2016-10-26
首页 上一页 1 2
  • ...
  • 12 13 14
  • ...
  • 28 29 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    64届高博会于2026年5月在南昌举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1