高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
大尺寸高承载复合材料-金属组合多级智能化结构的设计与制造
以目前航空航天、陆海空等军种的军事装备上主承载结构的轻量化为主要研发目的,通过高性能材料组合、多尺度优化以及智能化控制等来实现结构轻量化、提升军事装备作站效能的目的。同时研发的轻量化结构可以用于新能源汽车、工程机械以及空间结构上,从而实现汽车与机械的节能减排、桥梁与建筑的更大跨越能力等。针对上述情况,做了如下研究:研究复合材料与金属组合的多级智能化结构的多尺度设计方法,解决复合材料与复合材料之间以及复合材料与金属之间高效连接技术,研发高性价比的复合材料构件,研究适
南京工业大学 2021-01-12
一种变粒径组合填料水平潜流人工湿地污水处理工艺
污水生态处理技术是指运用生态学原理,采用工程学方法,使污水无害化、资源化, 是污水中污染物治理与水资源利用相结合的方法。其中,人工湿地生态处理技术及生物 操纵技术是实现污水生态处理及资源化的关键技术。研究表明,人工湿地能够利用基质 -微生物-植物构成的复合生态系统的物理、化学和生物的三重协调作用,通过过滤、吸 附、共沉、离子交换、植物吸收和微生物分解来实现对污水的高效净化,同时通过营养 物质和水分的生物地球化学循环,促进植物的生长,实现污水的资源化和无害化。 
同济大学 2021-04-13
西他滨和奥沙利铂在制备治疗肾细胞癌组合药物中应用
本发明提供地西他滨和奥沙利铂在制备治疗肾细胞癌组合药物中的应用,其中地西他滨和奥沙利铂的优选摩尔浓度比值为1:5~1:8,组合药是由地西他滨和奥沙利铂与药学上可接受的辅料制成。本发明经体内、外实验研究证明,地西他滨对奥沙利铂治疗肾细胞癌具有明显的协同作用,该结果扩大了它们临床应用的范围。本发明提供的组合药可增强奥沙利铂在肾细胞癌小鼠模型肿瘤细胞中的积聚,同时增强肾细胞癌小鼠模型对奥沙利铂的敏感性。
浙江大学 2021-04-13
一种基于 XML 建模的印刷出版中多元组合符号自动生成方法
本发明公开了一种基于 XML 建模的印刷出版中多元组合符号自动生成方法,包括步骤 1:根据定 义的组合符号模型,在数据采集端使用可视化的符号输入方式自动采集符号;步骤 2:在数据库系统中 添加相应的符号数据字段,根据组合符号模型进行数据采集;步骤 3:按照所需发布信息内容,抽取符 号信息生成符号 XML 模型;步骤 4:通过对符号 XML 模型解析,进行出版显示。本发明基于 XML 描 述语言,对组合符号进行组合设计。使用本方法的模型,可以生成动态的自适应符号,有助于符号发布 的自动化、标准化。而这种模型不仅可用于出版印刷,也可用于网页显示以及其他显示系统。而使用符 号编码调用基本的符号库,可使用 TrueType 字体或 Cad,这又保证了在不同的平台上的兼容性。
武汉大学 2021-04-13
一种D2D通信中频谱效率最大化的功率分配方法
本发明公开了一种D2D通信中频谱效率最大化的功率分配方法,通过分布式优化蜂窝用户的发射功率、D2D用户对的发射功率,在保证宏用户最低服务质量要求和D2D用户与蜂窝用户的功率限制的情况下最大化D2D用户的频谱效率。在给定蜂窝频带资源的情况下,最大化D2D通信的频谱效率等价于最大化D2D通信的和速率。本方法给出了在任何D2D用户都可以使用所有信道,并且任意信道可以同时被所有D2D用户占用的情况下,最优的蜂窝用户发射功率和D2D链路发射功率。主要用凸近似的方法将非凸问题近似为可求解的凸优化问题,并利用给出的闭式解快速收敛到凸问题的优化解。本发明具有收敛速度快,计算量小,易于实现,结果精度高等优点。
东南大学 2021-04-11
首台氢燃料电池混合动力机车轨道交通大功率燃料电池发电系统
2021 年 1 月 27 日,由西南交大与中车大同联合研制的我国首台氢燃料电池混合动力机车,在中车大同电力机车有限公司成功下线,标志着我国氢能轨道交通技术取得关键突破。该车采用西南交通大学陈维荣教授团队研发的轨道交通大功率燃料电池发电系统,突破了燃料电池混合动力系统集成、系统优化控制以及能量管理等核心技术,电堆采用国际领先、可低温启动的日本丰田金属电堆,这也是燃料电池金属电堆在轨道交通领域的首次应用。该车设计时速每小时 80 公里,满载氢气可单机连续运行 24.5 小时,平直道最大牵引载重超过 5000 吨,在不用改变任何铁路基础线路条件下,可在各类机务段、车辆段、编组站以及大型工厂、矿山、港口等场所执行运转、调车、救援等多用途任务。 陈维荣教授团队自 2008 年起,在我国率先开展氢燃料电池在轨道交通中的应用研究,开拓了氢能轨道交通研究方向。历时十余年的技术攻关,团队突破了大功率燃料电池优化控制、混合动力系统能量管理、故障诊断与寿命预测等关键技术,于 2013 年成功研制我国首辆燃料电池电动机车,并于 2016 年与中车唐山公司联合研制成功世界首列燃料电池混合动力有轨电车,引领了我国氢能轨道交通技术发展。 
西南交通大学 2021-04-13
一种基于模糊概率的光伏电池的最大功率点的跟踪方法
本发明公开了一种基于模糊概率的光伏电池的最大功率点的跟 踪方法。所述跟踪方法包括:以ε为采样间隔,获得 N 个采样点 [ui,P(ui)],i 为小于等于 N 的正整数;其中,ε为 0.05UOC/Ns~ 0.5UOC/Ns,UOC 为光伏电池的开路电压,Ns 为光伏电池的串联数; 通过构造扩散函数 fD 和隶属度函数 fM,求取概率函数 Pro(i),对概率 函数 Pro(i)的结果从大到小排序,并依次选取排序靠前的概率对应的 Xi 的并集作为最大功率点的搜索范围,使得所述排序靠前的概率函数 Pr
华中科技大学 2021-04-14
考虑时空关联与数据隐私性的有源配电网分布式光伏功率预测技术
(一)成果背景 分布式光伏可在用户侧就近安装与消纳,减少因长距离输送带来的线路损耗问题,在新型电力系统建设中发挥着重要作用。2021年6月,国家能源局综合司发布了《关于报送整县(市、区)屋顶分布式光伏开发试点方案的通知》,用以推动分布式光伏高质量发展、支撑新型电力系统建设。在该政策的推进下,分布式光伏容量迅猛增长。截至2021年底,国内分布式光伏装机容量已达到107.5GW,约占光伏总装机容量的三分之一,且其增长速度已经超过了集中式光伏。 (二)痛点问题 对于配电网来说,光伏出力易受天气因素影响,具有极强的随机波动特性,大规模分布式光伏接入,一方面加剧了配电网负荷短时波动,影响电力实时平衡,制约负荷预测精度提升;另一方面,分布式光伏出力特性与负荷特性的不匹配造成其难以消纳,为有源配电网运行管理带来严峻挑战。 对于电力市场交易来说,随着新一轮电力体制改革的持续深入,分布式光伏所有者作为售电商参与市场竞争成为必然趋势。分布式光伏出力的不确定性与短时剧烈波动性,使得分布式光伏电站/售电商难以制定合理的市场交易策略与电力交易合同,面临严重的市场风险。 因此,亟需精准的分布式光伏功率预测,为有源配电网调度运行、分布式光伏消纳,分布式光伏参与电力市场等提供有力数据支撑。 (三)技术方案 1、基于变分模态分解与动态图卷积网络的分布式光伏功率预测 首先利用变分模态分解各分布式光伏复杂出力序列分解为相对简单、波动较小的不同频率子序列,以减小场站间关联关系的挖掘难度。然后,基于分布式光伏场站间时空关联性处于动态变化中的考虑,利用全连接神经网络将各节点特征映射到多维空间,而后利用时域卷积挖掘跨节点关联关系,由此以数据驱动方式挖掘各频率下各场站子序列关联性,有效实现子序列动态图结构的构建。最终,基于可用于非欧式空间结构数据建模的卷积神经网络,将其与动态图结构结合,建立考虑动态时空关联性的图卷积预测模型,针对不同频率下出力子序列分别预测,而后重构得到各场站功率进而获取配电网分布式光伏总功率。 2、基于深度联邦学习的分布式光伏发电功率预测 首先,基于长短期记忆神经网络构建时域自编码器模型,该模型编码器用于提取每个时间步输入的时域特征,而后利用解码器将该特征向量转换为输出序列进行未来时间步的预测,自编码能显著增强长短期记忆神经网络的时域建模能力。而后,利用注意力机制解决其在处理长输入时间序列时会导致解码器面临特征冗余问题,且使模型聚焦于对输出更关键的时域特征。由此,利用注意力自编码预测模型通过对时域特征的有效挖掘实现功率预测精度的进一步提升。 在此基础上,开发了用于分布式光伏功率预测的联邦学习框架,在该框架中,本地用户仅需将本地模型进行共享,无需数据的传输,而后由中央服务器进行模型的聚合以实现用户间信息共享。在各本地场站进行注意力自编码预测模型的训练;在中央服务器,基于联邦平均算法实现各本地预测模型的汇聚、全局模型的生成与下发。在保证数据隐私性的前提下取得与传统集中式机器学习训练近似的预测效果。 (四)竞争优势 1、有效表征广域分布式光伏集群间时空关联特征,实现分布式光伏功率预测精度提升。 当缺乏气象实测或预报数据时,考虑分布式光伏时空相关性可有效提升分布式光伏功率预测精度。现有研究多利用各光伏场站地理距离或者整体出力表征时空相关性。这种静态建模方式在分布式光伏出力模式长期稳定的情况下,可以取得较好的预测效果。然而,易受天气因素的影响,分布式光伏出力极易发生短时波动,因而各场站关联性处于动态变化过程。以恒定的场站间关联关系去考虑这种复杂的集群出力序列,显然无法反映天气影响下分布式光伏出力短时变化,难以实现功率预测精度的有效提升。 所提的基于变分模态分解与动态图卷积网络的分布式光伏功率预测方法,利用数据驱动方式实现挖掘各场站间关联特性的动态实时挖掘。在基础上,考虑到不同模态分量下各场站间关联关系的差异性,将各场站原始功率分解为了相对简单、波动较小的不同频率模态分量,减小关联关系的挖掘难度。 2、有效保证各分布式光伏数据隐私性,且能取得与传统集中式机器学习训练方式近似的预测效果 现有的数据驱动预测方法性能在很大程度上依赖于训练数据的数量,因此大多以一种集中的训练方式实现,即中央服务器汇聚来自各场站的运行数据而后进行模型的训练。然而,这种集中训练的方式会期限数据隐私,使用户信息暴露在公共环境而导致被外部攻击者进行数据分析、行为探测等。此外,在竞争激烈的电力市场中,分布式光伏场站所有者可能不愿共享数据。这些因素使传统模型训练方式难以实现。 所提的基于深度联邦学习的分布式光伏发电功率预测方法,利用注意力自编码模型在本地场站进行建模预测,实现对本地功率时域特征的有效挖掘;利用分散式训练的联邦学习框架,实现各场站预测模型信息共享,有效保证本地用户的数据隐私的同时取得不错的预测效果。 创新点 1、考虑了场站间关联关系的动态性。对于分布式光伏,虽然场站数量众多、分布广泛,但是其位置临近,由于云团运动等气象因素导致的相关性较强。所提方法以数据驱动方式根据网络当前的各场站输入功率进行关联关系的动态表征,实现功率预测精度的有效提升。 2、在保障各分布式光伏站点数据隐私应的前提现实现信息共享。利用自编码结构进一步提升LSTM的时间序列建模能力;利用注意力机制模型聚焦于对预测更关键的输入特征,以此实现时域特征的有效挖掘。在此基础上,利用联邦学习框架聚合各本地模型,实现各站点信息聚合,实现精度有效提升。 市场前景 随着新型电力系统建设目标的推进,分布式光伏装机容量呈爆发式增长。所研成果可应用于配电网负荷预测、用户可调度容量评估、激励型需求响应基线负荷估计等场景中,为高比例分布式光伏有源配电网的安全、经济、高效运行,维持电力平衡等工作提供重要参考。同时,随着分布式光伏逐步参与到电力市场,所研成果可为分布式光伏售电商制定最优的交易策略,签订合理的价格合同提供有力数据支撑。综上所述,所研成果市场前景广阔。
华北电力大学 2023-08-10
一种治疗心脑血管疾病的药物组合物、制备方法及其质量控制方法
【发 明 人】郭立玮;付廷明;朱华明;朱华旭;张启春;刘峰;张伟【摘要】本发明提供一种治疗心脑血管疾病的药物组合物、制备方法及其质量控制方法,涉及制药领域。所述治疗心脑血管疾病的药物组合物,由下述重量配比的中药原料制成:地龙30~50份、全蝎15~25份和水蛭30~50份。其制备方法,包括如下步骤:将地龙粗粉、全蝎及水蛭粗粉混合均匀,加水浸泡,将药材连同浸泡液加入粉碎机进行湿法粉碎,离心,取上清液作采用中空纤维膜过滤,取粗提取液中分子量范围为9~120KDa的组分即得所述治疗心脑血管疾病的药物组合物。本发明药物组合物,去除了药材中干扰药效的杂质,所以抗血栓方面的药效较传统药物显著增强,且能显著减少服用剂量,却并未检测到毒性。
南京中医药大学 2021-04-13
一种基于SLM技术的比例换向阀组合阀芯及比例换向阀
本实用新型公开了一种基于SLM技术的比例换向阀组合阀芯及比例换向阀,该组合阀芯由第一半阀芯和第二半阀芯组成;所述第一半阀芯和第二半阀芯均为中空结构,所述第一半阀芯和第二半阀芯的外部沿阀芯轴线方向均开有若干节流口组,所述节流口组由若干沿阀芯圆周方向均匀分布的复合式节流口组成;第一半阀芯和第二半阀芯通过螺旋旋接。本实用新型将SLM快速成型技术应用于阀芯的制造,从而设计出内部具有完全中空结构的比例换向阀阀芯,可以显著的减轻阀芯的质量,提高频响,同时减小阀芯运动过程中的惯性力,有效的防止阀芯在运动中卡死,同时减小了摩擦力,提高了比例换向阀的使用性能和寿命。
浙江大学 2021-04-13
首页 上一页 1 2
  • ...
  • 59 60 61 62 63 64 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    63届高博会于5月23日在长春举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1