高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
一种基于三嗪类化合物的金属主链高分子及其合成方法
本发明属于高分子材料合成技术领域,具体为一种基于三嗪类化合物的金属主链高分子及其合成方法。本发明借助三嗪类化合物高效的反应活性、优异的配位能力以及有效的电子调控特性,实现辅助配体框架的高效精准合成;然后,利用配体辅助合成策略,以配体作为模板在加热条件下与金属离子化合物进行配位反应,实现金属离子的有序聚合,最终合成出分子量为11.14 KDa的三嗪类镍金属主链高分子。本发明首次合成出分子量达到一万阈值的金属主链高分子,具有分子结构精准可控、金属‑金属键相互作用力强的优点,同时,分子量的提升为金属主链高分子带来吸收可见光的能力、半导体的电学带隙以及溶液加工性,推动金属主链高分子材料的合成技术进一步发展。
复旦大学 2021-01-12
东南大学三项存内计算研究成果发表于固态电路领域顶会ISSCC
日前,2023年度第70届IEEE国际固态电路会议 (International Solid-State Circuits Conference,ISSCC)在美国举行。东南大学电子科学与工程学院国家ASIC工程中心杨军教授、司鑫副研究员和蔡浩副教授的三项存内计算研究成果在本届会议上发表并作了大会报告。东南大学是本届ISSCC在存储器、存内计算领域报道最多的单位。
东南大学 2023-03-03
一种具有高拉伸强度、高应力保持率手套用羧基丁腈胶乳及其制备方法
本发明涉及一种具有高拉伸强度、高应力保持率手套用羧基丁腈胶乳及其制备方法。所述胶乳由聚合物微粒子分散液A和聚合物微粒子分散液B按一定比例复合构成,具体为聚合物微粒子分散液A是1,3‑丁二烯、丙烯腈及甲基丙烯酸单体,在乳化剂、链转移剂、电解质及水溶性氧化剂存在下,通过乳液共聚合方法制备而成,经消泡、脱除残余单体、浓缩、调整pH后最终制备得到的;聚合物微粒子分散液B是1,3‑丁二烯、丙烯腈及衣康酸单体,在乳化剂、链转移剂、电解质及水溶性氧化剂存在下,通过乳液共聚合方法制备而成,经消泡、脱除残余单体、浓缩、调整pH后最终制备得到的;分散液B的聚合物微粒子中丙烯腈所占重量比大于分散液A的聚合物微粒子中丙烯腈所占重量比,聚合物微粒子分散液A和聚合物微粒子分散液B按所含的固体成分95:5至40:60的范围内配合形成高拉伸强度、高应力保持率手套用羧基丁腈胶乳。采用本发明制备的羧基丁腈胶乳生产的浸渍成型手套产品,拉伸强度≥30 MPa、应力保持率≥45%,且伸长率≥500%,同时具备高拉伸强度、高应力保持率及良好的柔软度。
南京工业大学 2021-01-12
西北工业大学黄维院士团队在二维材料柔性力学传感方面取得系列进展
近日,西北工业大学黄维院士团队王学文教授课题组在二维材料的制备、力学电学性能及柔性力学传感应用方面取得系列进展。
西北工业大学 2021-12-01
基于形状记忆聚合物智能复合材料结构的可展开柔性太阳能电池系统
课题组开展形状记忆聚合物及其复合材料结构的研究,自主研发了适用于航天环境的多种类、不同系列的形状记忆聚合物材料,这些材料能满足高低轨道等不同极端空间环境的需求。与形状记忆合金不同,形状记忆聚合物是一种激励响应聚合物材料(图1),具有主动可控大变形(20%-500%)、驱动方式多样、刚度可变等特性,可被设计成集驱动与承载功能一体化的部件,结构简单,可靠性高,未来有望部分替代复杂的机电驱动系统。本次搭载的“基于形状记忆聚合物智能复合材料结构的可展开柔性太阳能电池系统”主要包括哈工大研制的形状记忆复合材料锁紧释放机构、形状记忆聚合物复合材料可展开梁和上海空间电源研究所研制的柔性太阳能薄膜电池。基于复合材料力学理论和结构精细化设计,形状记忆聚合物复合材料结构可以实现柔性太阳能电池的锁紧、释放和展开,及展开后高刚度可承载等功能。
哈尔滨工业大学 2021-04-11
中国农业大学何志祝教授在自供电柔性可穿戴传感技术方面取得进展
中国农业大学工学院智能传感与装备青年科学家创新团队的何志祝教授研究开发出用于温差发电的磁封装定形相变储热材料并研制出一套基于体热的自供电柔性可穿戴传感系统。
中国农业大学 2022-03-18
LG-MPS03型 柔性自动化生产线及工业机器人应用实训系统
一、技术参数要求: 1、输入电源:单相三线AC220V ±10%  50Hz 2、工作环境:环境温度范围为-5℃~+40℃ 相对湿度<85%(25℃)海拔<4000m 3、装置容量:<1.5kVA 4、设备外型尺寸:376cm×180cm×150cm 5、单站工作台尺寸:860mm×470mm×1500mm 二、系统组成要求: (一)上料检测单元 由料斗、回转台、货台、螺旋导料机构、直流减速电机(10W/24V  5r/m)、光电开关、电气安装板等组成。主要完成将工件从回传上料台依次送到搬运工位。 (二)搬运站 由机械手、横臂、回转台、机械手爪、旋转气缸等组成,主要完成对工件的搬运。 (三)加工单元 由旋转工作台、平面推力轴承、直流减速电机(10W/24V  5r/m)、刀具库(3种刀具)、升降式加工系统、加工组件、检测组件、光电传感器、转台到位传感器、步进电机、步进电机驱动器、电气挂板等组成。主要完成物料加工和深度的检测。工件在旋转平台上被检测及加工。旋转平台由直流电机驱动。平台的定位由继电器回路完成,通过电感式传感器检测平台的位置。工件在平台并行完成检测及钻孔的加工。在进行钻孔加工时,夹紧执行件夹紧工件。加工完的工件,通过电气分支送到下一个工作站。 (四)搬运单元 由机械手、直线移动机构、无杆气缸、薄型气缸、单杆气缸、平行气夹、工业导轨、电气安装板等组成,主要完成对工件的提取及搬运。提取装置上的气爪手将工件从前一站提起,并将工件根据前站的工件信息结果传送到下一单元。本工作单元可以与其他工作单元组合并定义其他的分类标准,工件可以被直接传输到下一个工作单元。 (五)传送带站 由输送带、检测机构、推料气缸、分拣料槽、交流电动机、变频器、同步带轮、光电传感器、色标传感器等组成,主要完成对工件的输送及分拣。 (六)安装站 由料筒、换料机构、推料机构、旋转气缸、真空吸盘、摇臂、电气安装板等组成,主要完成对两种不同工件的上料及安装。为系统逐一提供两色小工件。供料过程中,由双作用气缸从料仓中逐一推出小工件,接着,转换模块上的真空吸盘将工件吸起,转换模块的转臂在旋转缸的驱动下将工件移动至下一个工作单元的传输位置。 (七)机器人安装单元 由机器人、控制器、气爪等组成,主要完成对工件的搬运,装配。 (八)分类单元 由步进电机、步进电机驱动器、滚株丝杆、立体库、推料气缸、电感传感器、电磁阀、电气安装板等组成。主要完成对成品工件分类存储。 (九)主控单元: 主要完成监视各分站的工作状态并协调各站运行,完成工业控制网络的集成。总线结构采用工业以太网通信,使各站之间的控制信息和状态数据能够实时相互交换。 (十)MCGS工业组态监控软件: 当8个单元全部进入联网状态时,管理员能够通过组态监控机中各种组态按钮方便的控制整个系统的运行、停止等。每个单元的工作状态以及工件的材质、颜色等在监控画面上也能够清楚的看到。  
北京智控理工伟业科教设备有限公司 2022-06-30
基于智能锁模算法、时间拉伸技术和实时高速电路建立的实时光谱分析控制平台
近日,上海交通大学电子系义理林教授课题组基于智能锁模算法、时间拉伸技术和实时高速电路建立的实时光谱分析控制平台,实现了锁模激光器输出飞秒脉冲的实时光谱调控,对飞秒激光器的设计具有重要的应用价值。相关成果以“Intelligent control of mode-locked femtosecond pulses by time-stretch-assisted real-time spectral analysis”为题目于2020年1月发表于国际光学顶尖期刊《Light: Science & Applications》(中科院长春光机所与Nature出版集团合办期刊),并入选为封面文章,在“News & Views”栏目被专门评述。博士生蒲国庆为第一作者,义理林教授为通信作者。 图说:期刊封面文章 飞秒尺度(1E-15秒)脉冲对应着原子分子、材料、生物蛋白、化学反应等丰富物质体系的众多超快过程,有着广泛而重要的应用。锁模激光器作为产生飞秒脉冲的重要基础研究工具,在物理、化学、生物、材料、信息科学等领域都有广泛的应用。飞秒锁模激光器自上世纪六十年代发明以来,与其相关的研究分别于1999,2005,2018年获得过诺贝尔奖。 随着超快光学的快速发展,越来越多的前沿应用需要对飞秒脉冲的时域和光谱进行精细控制。由于飞秒脉冲的产生涉及非常复杂的非线性和色散传输效应,达到特定脉冲状态的稳态输出需要对激光器多个参数在高维空间进行优化,传统基于激光器光学设计和优化的方法已被证明难以精确实现。 通过对飞秒脉冲状态进行智能识别,结合智能算法对激光器多参数进行全局优化,有望获得理想的飞秒脉冲输出,但其主要挑战在于飞秒脉冲难以实时精确识别。低速时域采样无法识别飞秒脉冲宽度和形状,光谱仪虽可识别飞秒脉冲积分光谱但无法识别其瞬时光谱,因此传统方法都无法做到实时控制飞秒脉冲精确锁模状态。为了解决这一难题,义理林教授课题组提出在锁模控制环内引入时间拉伸-色散傅里叶变换(TS-DFT)技术,通过时域到光谱的转换,采用低速时域采样即可识别飞秒脉冲对应的瞬时光谱宽度和形状。结合智能控制算法,实现了以1.4nm为精度对飞秒脉冲光谱宽带从10nm到40nm进行可编程控制,光谱形状可编程为高斯型或三角形等。这是本领域首次实现飞秒锁模脉冲光谱宽度和形状高精度实时编程控制,解决了飞秒锁模脉冲锁模状态无法精确调控的难题。 基于实时的光谱控制,该研究还展示了从窄谱锁模态至宽谱锁模态以及从三角形光谱脉冲态至宽谱锁模态的演变过程,发现两者动力学过程具有相似性,提出了目标锁模状态可能决定中间动力学过程的猜想,为人们进一步探索锁模激光器内部机理提供新视角。 图说:基于快速光谱分析的飞秒锁模脉冲智能控制 非线性光学著名专家John Dudley教授(欧洲物理学会主席,IEEE/OSA Fellow)在《Light: Science & Applications》的“News & Views”栏目撰文介绍此项工作,认为本工作极具创新性,开拓了研究锁模动力学新的可能性,很可能应用于多种锁模光纤激光器中。 义理林教授课题组过去六年来一直致力于解决飞秒锁模激光器的智能控制问题,2019年发表在光学领域顶级期刊《Optica》的“智能锁模激光器”成果入选美国光学学会旗下新闻杂志《Optics & Photonics News》2019年光学年度进展“Optics in 2019”。该方向工作部分得到国家自然科学基金(61575122)的支持。《Light: Science & Applications》论文全文https://www.nature.com/articles/s41377-020-0251-x《Light: Science & Applications》“New & Views”评述论文https://www.nature.com/articles/s41377-020-0270-7
上海交通大学 2021-04-10
大规模集成电路用引线框架Cu-Ni-Si系、Cu-Fe-P系合金
集成电路是微电子技术的核心,与国防和国民经济现代化, 乃至人们的文化生活都息息相关。集成电路由芯片和框架经封装而成, 其中框架既是骨架又是半导体芯片与外界的联接电路, 是芯片的散热通道, 又是连结电路板的桥梁, 因此框架在集成电路器件和各组装程序中占有极其重要的地位,目前,由于集成电路向高密度, 高集成化方向发展, 芯片的散热问题已成为突出矛盾。集成电路大规模和超大规模的迅速推进,对集成电路框架及材料提出了高、精、尖、短、小、轻、薄的要求,过去广泛使用的铁镍42合金已不能满足要求。而铜合金框架材料, 利用铜合金优良的传热性能, 加入少量强化元素, 通过固溶强化和弥散强化提高其强度, 同时仅稍微损失导热性能。目前,铜合金框架已成为主体,形成了中强中导、高强中导、高强高导合金系列。以前,由于在合金的熔炼工艺、轧制和热处理工艺以及板型控制等关键技术与国外先进水平有较大差距,我国所使用的大规模集成电路引线框架材料长期以来都是依靠进口。目前,本课题组通过一系列研究,开发了具有自主知识产权的Cu-Ni-Si系合金,并实现了Cu-Fe-P 系合金铜带和异型带的国产化大规模生产。 一、Cu-Ni-Si系铜合金主要性能指标 1.抗拉强度σb:650~750MPa; 2.延伸率>8%; 3.导电率:45~60%IACS。 二、Cu-Fe-P系铜合金主要性能指标 1.抗拉强度σb:450~600MPa; 2.延伸率>7%; 3.导电率:60~80%IACS。
上海理工大学 2021-04-11
大规模集成电路用引线框架Cu-Ni-Si系、 Cu-Fe-P系合金
集成电路是微电子技术的核心,与国防和国民经济现代化,乃至人们的文化生活都息息相关。集成电路由芯片和框架经封装而成,其中框架既是骨架又是半导体芯片与外界的联接电路,是芯片的散热通道,又是连结电路板的桥梁,因此框架在集成电路器件和各组装程序中占有极其重要的地位,目前,由于集成电路向高密度,高集成化方向发展,芯片的散热问题已成为突出矛盾。集成电路大规模和超大规模的迅速推进,对集成电路框架及材料提出了高、精、尖、短、小、轻、薄的要求,过去广泛使用的铁镍42合金已不能满足要求。而铜合金框架材料,利用铜合金优良的传热性能,加入少量强化元素,通过固溶强化和弥散强化提高其强度,同时仅稍微损失导热性能。目前,铜合金框架已成为主体,形成了中强中导、高强中导、高强高导合金系列。以前,由于在合金的熔炼工艺、轧制和热处理工艺以及板型控制等关键技术与国外先进水平有较大差距,我国所使用的大规模集成电路引线框架材料长期以来都是依靠进口。目前,本课题组通过一系列研究,开发了具有自主知识产权的Cu-Ni-Si系合金,并实现了Cu-Fe-P 系合金铜带和异型带的国产化大规模生产。
上海理工大学 2021-04-13
首页 上一页 1 2
  • ...
  • 73 74 75 76 77 78 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    64届高博会于2026年5月在南昌举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1