高等教育领域数字化综合服务平台
云上高博会服务平台 高校科技成果转化对接服务平台 大学生创新创业服务平台 登录 | 注册
|
搜索
搜 索
  • 综合
  • 项目
  • 产品
日期筛选: 一周内 一月内 一年内 不限
2023年度国内、国际十大科技新闻发布
中央广播电视总台发布2023年度国内十大科技新闻,2023年度国际十大科技新闻。
中央电视台 2023-12-26
科技部发布2022年度全国科普统计数据
2022年全国共筹集科普工作经费191.00亿元,比2021年增长1.02% 。
科技部科技人才与科学普及司 2024-01-12
一种转动解耦的两自由度调平机构
本发明提供了一种转动解耦的两自由度调平机构,包括定平台、动平台和连接在两平台之间的三个分支;第一分支仅有一个十字万向节与定、动平台相连接;第二分支中转动导轨与滑块之间的移动副为驱动副,滑块直线运动带动曲柄连杆转动,进而驱动动平台绕十字万向节与动平台的转动副的轴线旋转;第三分支中转动导轨与滑块之间的移动副为驱动副,滑块直线运动带动曲柄连杆旋转,进而驱动动平台绕十字万向节与定平台之间转动副轴线的旋转。本发明结构简单,动平台的两个转动运动完全解耦,运动性能良好,控制容易,工作空间较大,加工装配性好,具有良好的实用性。
华中科技大学 2021-04-11
一种基于图论的高光谱图像显著度计算方法
本发明公开了一种基于图论的高光谱图像显著度计算方法,包括以下步骤:1)将输入的高光谱图像以图表示;2)对图进行权值计算,构建权重矩阵,权重矩阵中的元素值反映了中任意一个顶点和其他所有顶点的联系;3)像元的全局显著性计算,像元的全局显著性等于它与图像中所有其它像元间权值的总和:4)像元的局部显著性计算,像元的局部显著性用其邻域背景像素的方差来表示:5)像元的最终显著度计算,将对应像元的全局显著性与局部显著性相乘,得到各像元的最终显著度。本发明在计算高光谱图像显著度时,充分考虑了感兴趣目标的光谱特性和几何尺寸特性,因此,能够有效抑制背景的干扰,提高感兴趣区域的提取效果。
华中科技大学 2021-04-11
一种用于干法分级的360度气流布风 、布料机构
本发明属于布风及布料技术领域,具体涉及一种用于干法分级的 360 度气流布风、布料机构。本机构包括设置在上侧的风筛,风筛的下侧设置有呈 360 度全环向布风的送风装置,所述风筛上均布有便于自送风装置处送来的风吹出的筛孔,且风筛的上表面设置为便于物料自风筛上滑落并分散的倾斜状。本发明中的风筛呈圆锥状,也即本发明采用了环向的圆锥状筛面,这种圆锥状的筛面布料方式比起传统流化床普遍采用的单点布料和线性布料方式,能够显著增大流化床的布料面积,从而有助于实现均匀布料;同时本发明在风筛的下侧设置有呈 360 度全环向布风的送风装置,实现了环向均匀布风。本发明显著提高了生产能力,并提高了分级、干燥、冷却效率。
安徽理工大学 2021-04-13
耐高温防静电台垫 耐300度高温防静电台垫
产品详细介绍深圳市利盛泰静电科技有限公司0755-276705580755-2767064813510890109www.lst-esd.com产品简介:防静电台垫(地垫)主要用导静电材料、静电耗散材料及合成橡胶等通过多种 工艺制作而成。台垫使用时间持久,具有很好的防酸、防碱、防化学熔剂特性,并且耐磨,易清洗;铺设防静电台垫使人体及台面接触的ESDS镊子、工具、器具、仪表等达到均一的电位并释放静电,同时使静电敏感器件(SSD)不受摩擦起电等静电放电现象的干扰,从而达到静电防护的效果。产品一般为二层结构,表面层为静电耗散层,底层为导电层。表面层为约0.3-0.5mm厚的静电耗散层,底层为约1.5-1.7mm厚的导电层。● 面层电阻率:107-109Ω● 底层电阻率:103-105Ω● 磨耗率:<0.02g/cm2● 静电耗散时间:<0.1s 
深圳市利盛电子有限公司 2021-08-23
李光鹏教授课题组研究揭示ZGA-regulator在体细胞重编程中作用机制
终末分化的体细胞可以通过SCNT或者诱导性多能干细胞(iPS)技术,重编程至全/多能性的状态。与SCNT和iPS技术相比,化学小分子诱导(CiPS)仅使用化学小分子就能使普通体细胞发生重编程,逆转为多潜能干细胞。CiPS技术不仅简单,而且不受试验材料限制及不涉及伦理方面的问题,因此CiPS具有更广泛的科研、临床及育种应用价值。然而,CiPS的诱导耗时长且效率低,如何提高CiPS的诱导效率,是化学诱导细胞重编程领域亟待解决的问题之一。 本研究针对哺乳动物SCNT和CiPS介导的体细胞重编程效率低与克隆动物出生率低等关键科学问题,利用课题组在2018年自主研发的“胚胎ZGA实时监测系统”,结合siRNA-repressor和mRNA-inducer技术,对16种“合子基因组调控因子(ZGA-regulator)”进行筛选。结果发现,Dux、Dppa2和Dppa4在体细胞重编程的早期阶段发挥关键作用。如用CRISPR-Cas9敲除Dux,克隆胚胎将完全被阻断在2-细胞时期。只有在瞬间过表达Dux(tOE-Dux),使其符合内源Dux时空特性时,才能提高核移植重编程效率,我们将这种方法称为D-SCNT。此外,D-SCNT结合干扰DNA甲基化酶(si-Dnmts)能够进一步提高克隆动物的出生率。研究还发现,特异性过表达Dux可以显著提高CiPS的细胞重编程效率和提高干细胞的多能性,并对相关机制做了阐释。 该研究首次揭示了ZGA调控因子Dux在体细胞重编程中的作用机制,时空特异性过表达Dux可大幅度提高克隆效率和化学小分子诱导多能干细胞的建系效率,为干细胞的再生医学与生物工程应用提供了新的途径。
内蒙古大学 2021-02-01
功能纳米与软物质研究院Mario Lanza教授课题组在Nature Electronics上发表论文
随着忆阻器在非易失性存储器、模拟人类大脑的深度学习等重要领域的研究逐步深入,忆阻器的研究得到越来越多的重视。在固态电子器件和电路中应用二维材料,将有助于扩展摩尔定律,并能获得优于CMOS的先进产品。基于二维材料的忆阻器能够应用于信息存储和神经态计算,具有高热稳定性,阈值型和双极型阻变共存,增强、抑制和弛豫的高度可控性,以及出色的机械稳定性和透明度等优点。 近日,功能纳米与软物质研究院Mario Lanza教授在Nature子刊《Nature Electronics》上发表了题为“Wafer-scale integration of two-dimensional materials in high-density memristive crossbar arrays for artificial neural networks”的封面文章。作者提出二维材料六方氮化硼(h-BN)可以作为高密度忆阻阵列的阻变材料,构建可用于图像识别的人工神经网络的器件。其获得h-BN基忆阻阵列器件成品率高达98%,且表现出超低的周期间差异性(低至1.53%)和出色的器件间差异性(低至5.74%)。图像分类器的仿真结果表明,所测得的器件I-V曲线的均一性足以匹配理想软件实现所需的精度。
苏州大学 2021-02-01
动物医学院孔庆科博士课题组在多糖疫苗研究中取得突破性进展
国际顶级综合期刊美国科学院院刊(PNAS)在线发表动物医学院孔庆科博士课题组在多糖疫苗研究中的重要研究成果“Synthesis and delivery of Streptococcus pneumoniae capsular polysaccharides by recombinant attenuated Salmonella vaccines”(减毒沙门氏菌疫苗合成及递送来源于肺炎链球菌的多糖抗原)。该研究首次通过合成生物学,细菌遗传学及免疫学等方法,将革兰氏阳性细菌的表面多糖抗原成功表达合成于革兰氏阴性细菌减毒沙门氏菌的表面,并连接于沙门氏菌内毒素的类脂A上,利用遗传改造及调控的减毒沙门菌疫苗载体递送肺炎链球菌的多糖抗原开发新型疫苗。该方法突破了目前固有的阳性细菌多糖疫苗的构建方式,为将来快速、高效的构建多糖疫苗奠定了基础。 博士后苏华荔及青年教师刘青博士为共同第一作者,动物医学院孔庆科博士为通讯作者,西南大学为第一完成单位及第一通讯作者单位。美国科学院院士、佛罗里达大学Curtiss教授为共同通讯作者,动物医学院2017级硕士研究生卞晓萍及佛罗里达大学王世峰博士参与相关工作。该研究得到国家自然科学基金及美国NIH项目的资助。
西南大学 2021-02-01
徐宇君课题组发现哺乳动物精子发生中的一个“大管家”
不孕不育严重影响人类的卫生健康,而DAZ家族蛋白的缺失是导致男性不育最常见的分子缺陷之一,约占非梗阻性无精症男性不育患者的10—15%。但是,对于DAZ家族蛋白缺失导致不育的机理尚不清楚。  徐宇君课题组对男性不育因子DAZ家族的DAZL蛋白在精子发生发育中的调控作用进行全面的遗传学、发育学、分子生物学水平机制剖析。研究发现DAZL蛋白直接结合3000多个睾丸中的转录本,其中包括了控制多个精子发生关键节点。直接通过参与这些精子发生必需蛋白质翻译调控,促进这些下游靶标转录本翻译成蛋白。DAZL敲掉后其靶标基因的表达在蛋白水平全部显著下降,精子的发育各阶段所需的特殊蛋白无法得到满足,精子发生的重要事件被迫停滞,从而影响精子的发育和雄性生殖。这些发现对于DAZ家族导致男性不育的致病机理提供了新的认识。
南京医科大学 2021-04-28
首页 上一页 1 2
  • ...
  • 69 70 71
  • ...
  • 130 131 下一页 尾页
    热搜推荐:
    1
    云上高博会企业会员招募
    2
    64届高博会于2026年5月在南昌举办
    3
    征集科技创新成果
    中国高等教育学会版权所有
    北京市海淀区学院路35号世宁大厦二层 京ICP备20026207号-1